A sphere theorem for reverse volume pinching on even-dimensional manifolds
HTML articles powered by AMS MathViewer
- by Leslie Coghlan and Yoe Itokawa
- Proc. Amer. Math. Soc. 111 (1991), 815-819
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042262-0
- PDF | Request permission
Abstract:
Let $M$ be a compact simply connected riemannian manifold of even dimension $d$. It is well known that if the sectional curvature of $M$ lies in the range $\left ( {0,\lambda } \right ]$, then $M$ has volume greater than or equal to that of the $d$-dimensional euclidean sphere $S_\lambda ^d$ of constant curvature $\lambda$. We prove that if the volume of $M$ is no greater than 3/2 times that of $S_\lambda ^d$, then $M$ is homeomorphic with the sphere.References
- M. Berger, On the diameter of some riemannian manifolds, Technical Report, University of California, Berkeley, 1962.
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74. MR 263092, DOI 10.2307/2373498
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Jeff Cheeger and Detlef Gromoll, On the lower bound for the injectivity radius of $1/4$-pinched Riemannian manifolds, J. Differential Geometry 15 (1980), no. 3, 437–442 (1981). MR 620897
- Shiu Yuen Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289–297. MR 378001, DOI 10.1007/BF01214381
- Karsten Grove and Peter Petersen V, Bounding homotopy types by geometry, Ann. of Math. (2) 128 (1988), no. 1, 195–206. MR 951512, DOI 10.2307/1971439
- Karsten Grove, Peter Petersen V, and Jyh Yang Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990), no. 1, 205–213. MR 1029396, DOI 10.1007/BF01234418
- Karsten Grove and Katsuhiro Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201–211. MR 500705, DOI 10.2307/1971164
- Paul Günther, Einige Sätze über das Volumenelement eines Riemannschen Raumes, Publ. Math. Debrecen 7 (1960), 78–93 (German). MR 141058, DOI 10.5486/pmd.1960.7.1-4.08 C. Heim, Une borne pour la longeur des géodésiques periodiques d’une variété riemannienne compacte, Thesis, Université Paris, 1971.
- Yoe Itokawa, The topology of certain Riemannian manifolds with positive Ricci curvature, J. Differential Geometry 18 (1983), no. 1, 151–155. MR 697986
- W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. (2) 69 (1959), 654–666. MR 105709, DOI 10.2307/1970029
- W. Klingenberg and T. Sakai, Injectivity radius estimate for ${1\over 4}$-pinched manifolds, Arch. Math. (Basel) 34 (1980), no. 4, 371–376. MR 593953, DOI 10.1007/BF01224973
- Takatoshi Nagayoshi and Yôtarô Tsukamoto, On positively curved Riemannian manifolds with bounded volume, Tohoku Math. J. (2) 25 (1973), 213–218. MR 346703, DOI 10.2748/tmj/1178241380
- Yukio Otsu, Katsuhiro Shiohama, and Takao Yamaguchi, A new version of differentiable sphere theorem, Invent. Math. 98 (1989), no. 2, 219–228. MR 1016261, DOI 10.1007/BF01388850
- Stefan Peters, Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. Reine Angew. Math. 349 (1984), 77–82. MR 743966, DOI 10.1515/crll.1984.349.77
- Katsuhiro Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc. 275 (1983), no. 2, 811–819. MR 682734, DOI 10.1090/S0002-9947-1983-0682734-1
- John R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485–488. MR 124905, DOI 10.1090/S0002-9904-1960-10511-3
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 815-819
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042262-0
- MathSciNet review: 1042262