$Q$-sets, Sierpiński sets, and rapid filters
HTML articles powered by AMS MathViewer
- by Haim Judah and Saharon Shelah
- Proc. Amer. Math. Soc. 111 (1991), 821-832
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045594-5
- PDF | Request permission
Abstract:
In this work we will prove the following: Theorem 1. cons(ZF) implies cons(ZFC + there exists a $Q$-set of reals + there exists a set of reals of cardinality ${\aleph _1}$, which is not Lebesgue measurable). Theorem 2. cons(ZF) implies cons(ZFC+${2^{{\aleph _0}}}$ is arbitrarily larger than ${\aleph _2}$+ there exists a Sierpinski set of cardinality ${2^{{\aleph _0}}}$ + there are no rapid filters on $\omega$). These theorems give answers to questions of Fleissner [F1] and Judah [Ju].References
- James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775, DOI 10.1017/CBO9780511758867.002
- W. G. Fleissner, Current research on $Q$ sets, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 413–431. MR 588793
- Jaime I. Ihoda, Strong measure zero sets and rapid filters, J. Symbolic Logic 53 (1988), no. 2, 393–402. MR 947847, DOI 10.2307/2274512
- Jaime I. Ihoda and Saharon Shelah, $\Delta ^1_2$-sets of reals, Ann. Pure Appl. Logic 42 (1989), no. 3, 207–223. MR 998607, DOI 10.1016/0168-0072(89)90016-X
- Jaime Ihoda and Saharon Shelah, $Q$-sets do not necessarily have strong measure zero, Proc. Amer. Math. Soc. 102 (1988), no. 3, 681–683. MR 929002, DOI 10.1090/S0002-9939-1988-0929002-8
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- Arnold W. Miller, There are no $Q$-points in Laver’s model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), no. 1, 103–106. MR 548093, DOI 10.1090/S0002-9939-1980-0548093-2
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- Saharon Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. MR 768264, DOI 10.1007/BF02760522
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 821-832
- MSC: Primary 03E35; Secondary 54A25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045594-5
- MathSciNet review: 1045594