A sampling theorem for a class of pseudoanalytic functions
HTML articles powered by AMS MathViewer
- by J. L. Schiff and W. J. Walker
- Proc. Amer. Math. Soc. 111 (1991), 695-699
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045599-4
- PDF | Request permission
Abstract:
The $\mu$-regular class of pseudoanalytic functions satisfy the Cauchy-Riemann equations for $\Delta \mu = {\mu ^2}\mu$. A sampling algorithm is given which expresses the Fourier coefficients of these functions as a countable sum of sample values taken around a circle. This representation is obtained using Möbius inversion.References
- H. Bruns, Grundlinier des Wissenschaftlichen Rechrens, Leipzig, 1903.
- R. J. Duffin, Yukawan potential theory, J. Math. Anal. Appl. 35 (1971), 105–130. MR 277743, DOI 10.1016/0022-247X(71)90239-3
- J. L. Schiff and W. J. Walker, A sampling theorem for analytic functions, Proc. Amer. Math. Soc. 99 (1987), no. 4, 737–740. MR 877049, DOI 10.1090/S0002-9939-1987-0877049-1
- J. L. Schiff and W. J. Walker, A sampling theorem and Wintner’s results on Fourier coefficients, J. Math. Anal. Appl. 133 (1988), no. 2, 466–471. MR 954721, DOI 10.1016/0022-247X(88)90416-7
- J. L. Schiff and W. J. Walker, A Bieberbach condition for a class of pseudo-analytic functions, J. Math. Anal. Appl. 146 (1990), no. 2, 570–579. MR 1043123, DOI 10.1016/0022-247X(90)90325-A
- Aurel Wintner, An Arithmetical Approach to Ordinary Fourier Series, publisher unknown, Baltimore, Md., 1945. MR 0015084
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 695-699
- MSC: Primary 30G20; Secondary 30B99
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045599-4
- MathSciNet review: 1045599