On the extensions of vector-valued Loeb measures
HTML articles powered by AMS MathViewer
- by Horst Osswald and Yeneng Sun
- Proc. Amer. Math. Soc. 111 (1991), 663-675
- DOI: https://doi.org/10.1090/S0002-9939-1991-1047007-6
- PDF | Request permission
Abstract:
Two ways of constructing countably additive vector measures from internal vector measures are given. The connection of the extendability of vector-valued Loeb measures and the existence of the internal control measures is shown.References
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- C. Ward Henson and L. C. Moore Jr., Nonstandard analysis and the theory of Banach spaces, Nonstandard analysis—recent developments (Victoria, B.C., 1980) Lecture Notes in Math., vol. 983, Springer, Berlin, 1983, pp. 27–112. MR 698954, DOI 10.1007/BFb0065334
- Albert E. Hurd and Peter A. Loeb, An introduction to nonstandard real analysis, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR 806135
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- Peter A. Loeb, A functional approach to nonstandard measure theory, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 251–261. MR 737406, DOI 10.1090/conm/026/737406 P. A. Loeb and H. Osswald, Nonstandard integration theory in solid Riesz space (to appear).
- Yeneng Sun, On the theory of vector valued Loeb measures and integration, J. Funct. Anal. 104 (1992), no. 2, 327–362. MR 1153991, DOI 10.1016/0022-1236(92)90004-3
- Yeneng Sun, A nonstandard proof of the Riesz representation theorem for weakly compact operators on $C(\Omega )$, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 1, 141–145. MR 966150, DOI 10.1017/S0305004100001468
- Yeneng Sun, A Banach space in which a ball is contained in the range of some countably additive measure is superreflexive, Canad. Math. Bull. 33 (1990), no. 1, 45–49. MR 1036854, DOI 10.4153/CMB-1990-007-5 —, Nonstandard theory of vector measures, Ph.D. dissertation, University of Illinois, Urbana, Illinois, 1989.
- Rade T. Živaljević, Loeb completion of internal vector-valued measures, Math. Scand. 56 (1985), no. 2, 276–286. MR 813641, DOI 10.7146/math.scand.a-12101
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 663-675
- MSC: Primary 28E05; Secondary 03H05, 28B05, 46G10, 46S20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1047007-6
- MathSciNet review: 1047007