Regularity of the $\overline \partial$-Neumann problem
HTML articles powered by AMS MathViewer
- by So-Chin Chen
- Proc. Amer. Math. Soc. 111 (1991), 779-785
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049842-7
- PDF | Request permission
Abstract:
In this paper we prove that locally there is no obstruction to global regularity for the $\bar \partial$-Neumann problem. By this we mean the following: Let $D$ be a smoothly bounded pseudoconvex domain in ${{\mathbf {C}}^n},n \geq 2$, and let $p \in {\mathbf {D}}$. Given any $m \in {{\mathbf {Z}}^ + }$, one can construct a smoothly bounded pseudoconvex subdomain $D_m \subseteq D$ such that $b D_m \cap bD$ contains an open neighborhood of $p$ in $bD$ and the $\bar \partial$-Neumann problem on ${D_m}$ is globally regular up to order $m$ in the sense of the Sobolev norm.References
- David E. Barrett, Regularity of the Bergman projection and local geometry of domains, Duke Math. J. 53 (1986), no. 2, 333–343. MR 850539, DOI 10.1215/S0012-7094-86-05321-4
- Steven R. Bell, Biholomorphic mappings and the $\bar \partial$-problem, Ann. of Math. (2) 114 (1981), no. 1, 103–113. MR 625347, DOI 10.2307/1971379
- Steve Bell, Differentiability of the Bergman kernel and pseudolocal estimates, Math. Z. 192 (1986), no. 3, 467–472. MR 845219, DOI 10.1007/BF01164021
- Harold P. Boas, Small sets of infinite type are benign for the $\overline \partial$-Neumann problem, Proc. Amer. Math. Soc. 103 (1988), no. 2, 569–578. MR 943086, DOI 10.1090/S0002-9939-1988-0943086-2
- David Catlin, Subelliptic estimates for the $\overline \partial$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131–191. MR 898054, DOI 10.2307/1971347 —, Global regularity of the $\bar \partial$-Neumann problem, in Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984.
- So-Chin Chen, Global regularity of the $\overline \partial$-Neumann problem on circular domains, Math. Ann. 285 (1989), no. 1, 1–12. MR 1010187, DOI 10.1007/BF01442668 —, Global regularity of the $\bar \partial$-Neumann problem: a sufficient condition, preprint.
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. II, Ann. of Math. (2) 79 (1964), 450–472. MR 208200, DOI 10.2307/1970404
- J. J. Kohn, Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542. MR 322365
- J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, DOI 10.1007/BF02395058
- J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492. MR 181815, DOI 10.1002/cpa.3160180305
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 779-785
- MSC: Primary 32F20; Secondary 35N15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049842-7
- MathSciNet review: 1049842