An approximation property related to $M$-ideals of compact operators
HTML articles powered by AMS MathViewer
- by Rafael Payá and Wend Werner
- Proc. Amer. Math. Soc. 111 (1991), 993-1001
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039261-1
- PDF | Request permission
Abstract:
We investigate a variant of the compact metric approximation property which, for subspaces $X$ of ${c_0}$, is known to be equivalent to $K(X)$, the space of compact operators on $X$, being an $M$-ideal in the space of bounded operators on $X,L(X)$. Among other things, it is shown that an arbitrary Banach space $X$ has this property iff $K(Y,X)$ is an $M$-ideal in $L(Y,X)$ for all Banach spaces $Y$ and, furthermore, that $X$ must contain a copy of ${c_0}$. The proof of the central theorem of this note uses a characterization of those Banach spaces $X$ for which $K(X)$ is an $M$-ideal in $L(X)$ obtained earlier by the second author, as well as some techniques from Banach algebra theory.References
- Erik M. Alfsen and Edward G. Effros, Structure in real Banach spaces. I, II, Ann. of Math. (2) 96 (1972), 98–128; ibid. (2) 96 (1972), 129–173. MR 352946, DOI 10.2307/1970895
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- Chong-Man Cho and William B. Johnson, A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$, Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. MR 774004, DOI 10.1090/S0002-9939-1985-0774004-5
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- J. Dixmier, Les fonctionnelles linéaires sur l’ensemble des opérateurs bornés d’un espace de Hilbert, Ann. of Math. (2) 51 (1950), 387–408 (French). MR 33445, DOI 10.2307/1969331
- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), no. 3-4, 309–325. MR 559675, DOI 10.1017/S0308210500017170 P. Harmand and Å. Lima, Banach spaces which are $M$-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264. D. Li, Quantitative unconditionality of Banach spaces $E$ for which $K(E)$ is an $M$-ideal in $L(E)$, Stud. Math. (to appear).
- Åsvald Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62. MR 430747, DOI 10.1090/S0002-9947-1977-0430747-4
- Åsvald Lima, On $M$-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), no. 1, 27–36. MR 642613, DOI 10.1512/iumj.1982.31.31004 D. Werner, Remarks on $M$-ideals of compact operators, Quart. J. Math. Oxford (to appear). W. Werner, Inner $M$-ideals in Banach-algebras, 1988, submitted.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 993-1001
- MSC: Primary 46B20; Secondary 47B07, 47D15, 47D30
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039261-1
- MathSciNet review: 1039261