The Gottlieb group of finite linear quotients of odd-dimensional spheres
HTML articles powered by AMS MathViewer
- by S. Allen Broughton
- Proc. Amer. Math. Soc. 111 (1991), 1195-1197
- DOI: https://doi.org/10.1090/S0002-9939-1991-1041012-1
- PDF | Request permission
Abstract:
Let $G$ be a finite, freely acting group of homeomorphisms of the odd-dimensional sphere ${S^{2n - 1}}$. John Oprea has proven that the Gottlieb group of ${S^{2n - 1}}/G$ equals $Z(G)$, the centre of $G$. The purpose of this short paper is to give a considerably shorter, more geometric proof of Oprea’s theorem in the important case where $G$ is a linear group.References
- D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840–856. MR 189027, DOI 10.2307/2373248
- Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, DOI 10.2307/2373349
- T. Ganea, Cyclic homotopies, Illinois J. Math. 12 (1968), 1–4. MR 220283 M. Isaacs, Characters of finite groups, Academic Press, New York, 1976.
- I. M. Isaacs, Real representations of groups with a single involution, Pacific J. Math. 71 (1977), no. 2, 463–464. MR 444758
- George E. Lang Jr., Evaluation subgroups of factor spaces, Pacific J. Math. 42 (1972), 701–709. MR 314043
- Jerry Malzan, On groups with a single involution, Pacific J. Math. 57 (1975), no. 2, 481–489. MR 382420
- John Oprea, Finite group actions on spheres and the Gottlieb group, J. Korean Math. Soc. 28 (1991), no. 1, 65–78. MR 1107213
- Jingyal Pak, On the fibered Jiang spaces, Fixed point theory and its applications (Berkeley, CA, 1986) Contemp. Math., vol. 72, Amer. Math. Soc., Providence, RI, 1988, pp. 179–181. MR 956490, DOI 10.1090/conm/072/956490
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 1195-1197
- MSC: Primary 57S17; Secondary 55Q52, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1041012-1
- MathSciNet review: 1041012