Rearrangements in steady vortex flows with circulation
HTML articles powered by AMS MathViewer
- by Alan R. Elcrat and Kenneth G. Miller
- Proc. Amer. Math. Soc. 111 (1991), 1051-1055
- DOI: https://doi.org/10.1090/S0002-9939-1991-1043409-2
- PDF | Request permission
Abstract:
It is shown that a steady two-dimensional flow, in which a finite vortex is in equilibrium with the irrotational flow past an obstacle, can be obtained as the solution of a variational problem in the class of rearrangements of a fixed function in ${L^p}$. The main step is to establish a bound on the support of the vorticity. The advantage of this approach, as in the recent works of Burton, Benjamin, and Auchmuty, is that the profile function of the vorticity is determined by the rearrangement class in which solutions are sought.References
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391 J. F. Auchmuty and T. B. Benjamin, unpublished manuscript.
- T. Brooke Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Lecture Notes in Math., vol. 503, Springer, Berlin, 1976, pp. 8–29. MR 0671099
- H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237. MR 0346109, DOI 10.1016/0022-1236(74)90013-5
- G. R. Burton, Steady symmetric vortex pairs and rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 269–290. MR 943803, DOI 10.1017/S0308210500014669
- G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 4, 295–319 (English, with French summary). MR 998605
- Alan R. Elcrat and Kenneth G. Miller, Steady vortex flows with circulation past asymmetric obstacles, Comm. Partial Differential Equations 12 (1987), no. 10, 1095–1115. MR 886341, DOI 10.1080/03605308708820520
- Bruce Turkington, On steady vortex flow in two dimensions. I, II, Comm. Partial Differential Equations 8 (1983), no. 9, 999–1030, 1031–1071. MR 702729, DOI 10.1080/03605308308820293 —, On steady vortex flows in two dimensions, II, Comm. Partial Differential Equations 8 (1983), 1031-1071.
- Bruce Turkington, On the evolution of a concentrated vortex in an ideal fluid, Arch. Rational Mech. Anal. 97 (1987), no. 1, 75–87. MR 856310, DOI 10.1007/BF00279847
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 1051-1055
- MSC: Primary 35Q35; Secondary 58D25, 76C05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1043409-2
- MathSciNet review: 1043409