Power roots of linearized polynomials
HTML articles powered by AMS MathViewer
- by Wen Bao Han
- Proc. Amer. Math. Soc. 111 (1991), 913-920
- DOI: https://doi.org/10.1090/S0002-9939-1991-1046998-7
- PDF | Request permission
Abstract:
In the present paper, we have discussed the number of power roots of linearized polynomials. For some cases, the exact formulas are given.References
- H. Davenport, Bases for finite fields, J. London Math. Soc. 43 (1968), 21β39. MR 227144, DOI 10.1112/jlms/s1-43.1.21
- Kenneth F. Ireland and Michael I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. MR 661047
- H. W. Lenstra Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), no.Β 177, 217β231. MR 866111, DOI 10.1090/S0025-5718-1987-0866111-3
- Rudolf Lidl and Harald Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. MR 746963
- Oscar Moreno, Counting traces of powers over $\textrm {GF}(2^{m})$, Congr. Numer. 29 (1980), 673β679. MR 608466
- Oystein Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc. 36 (1934), no.Β 2, 243β274. MR 1501740, DOI 10.1090/S0002-9947-1934-1501740-7
- Wen Bao Han, On counting absolute trace of powers in $\textrm {GF}(p^m)$, Acta Math. Sinica (N.S.) 4 (1988), no.Β 3, 266β269. A Chinese summary appears in Acta Math. Sinica 32 (1989), no. 4, 576. MR 965574, DOI 10.1007/BF02560582
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 913-920
- MSC: Primary 11T06; Secondary 11T24
- DOI: https://doi.org/10.1090/S0002-9939-1991-1046998-7
- MathSciNet review: 1046998