$\omega _ 3\omega _ 1\to (\omega _ 3\omega _ 1,3)^ 2$ requires an inaccessible
HTML articles powered by AMS MathViewer
- by Lee Stanley, Dan Velleman and Charles Morgan
- Proc. Amer. Math. Soc. 111 (1991), 1105-1118
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049849-X
- PDF | Request permission
Abstract:
We show that if there is a simplified $({\omega _2},1)$-morass with linear limits and ${2^{{\aleph _1}}} = {\aleph _2}$, then ${\omega _3}{\omega _1} \nrightarrow {({\omega _3}{\omega _1},3)^2}$. Thus, assuming ${2^{{\aleph _1}}} = {\aleph _2}$, this negative relation holds in $V$ if both ${\aleph _2}$ and ${\aleph _3}$ are (successor cardinals)$^{L}$, since in this case, well-known arguments show there is a simplified $({\omega _2},1)$-morass with linear limits. The contrapositive is that, assuming ${2^{{\aleph _1}}} = {\aleph _2}$, the positive relation holds only if either ${\aleph _2}$ or ${\aleph _3}$ is (inaccessible)$^{L}$.References
- Hans-Dieter Donder, Another look at gap-$1$ morasses, Recursion theory (Ithaca, N.Y., 1982) Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 223–236. MR 791060, DOI 10.1090/pspum/042/791060
- Paul Erdős, András Hajnal, Attila Máté, and Richard Rado, Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, North-Holland Publishing Co., Amsterdam, 1984. MR 795592 T. Miyamoto, Some results in forcing, Doctoral Dissertation, Dartmouth College, 1987.
- Saharon Shelah and Lee Stanley, A theorem and some consistency results in partition calculus, Ann. Pure Appl. Logic 36 (1987), no. 2, 119–152. MR 911579, DOI 10.1016/0168-0072(87)90015-7 —, More consistency results in partition calculus (to appear). [V1] D. Velleman, Simplified morasses, J. Symbolic Logic 49 (1984), 257-271.
- Dan Velleman, Simplified morasses with linear limits, J. Symbolic Logic 49 (1984), no. 4, 1001–1021. MR 771773, DOI 10.2307/2274257
- Dan Velleman, Souslin trees constructed from morasses, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 219–241. MR 763903, DOI 10.1090/conm/031/763903
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 1105-1118
- MSC: Primary 03E05; Secondary 03E35, 03E45, 03E55
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049849-X
- MathSciNet review: 1049849