ON THE CONVERGENCE IN \mathcal{S}'

STEVAN PILIPOVIĆ

(Communicated by Palle E. T. Jorgensen)

Abstract. We prove the following assertion: Let $T_j, j \in \mathbb{N}$, be a sequence in \mathcal{S}' such that $T_j \ast \phi$ converges to 0 in \mathcal{S}' as $j \to \infty$, for any $\phi \in \mathcal{D}$.

Then $T_j \to 0$ in \mathcal{S}' as $j \to \infty$.

The following problem was presented by A. Kamiński: Let T_j be a sequence in \mathcal{S}' such that $T_j \ast \phi$ converges to 0 in \mathcal{S}' as $j \to \infty$ for any $\phi \in \mathcal{S}$. Does $T_j \to 0$ in \mathcal{S}' as $j \to \infty$? K. Keller gave a positive answer to this question in [3] by using an original method based on a theorem of Grothendieck. But the assertion follows directly from the equality of the linear hull of $\mathcal{S} \ast \mathcal{S}$, $\text{lin}(\mathcal{S} \ast \mathcal{S})$, and of \mathcal{S} proved by J. Voigt [9] and even earlier by H. Petzeltová and P. Vrbová [4]. Note that $\text{lin}(\mathcal{D} \ast \mathcal{D}) = \mathcal{D}$ is known from the following papers: L. A. Rubel, W. A. Squires, and B. A. Taylor [5], and J. Dixmier and P. Malliavin [1].

The aim of this paper is to prove the following theorem:

Theorem 1. Let $T_j, j \in \mathbb{N}$, be a sequence from \mathcal{S}' such that $T_j \ast \phi$ converges to 0 in \mathcal{S}' as $j \to \infty$ for any $\phi \in \mathcal{S}$. Then $T_j \to 0, j \to \infty$, in \mathcal{S}'.

The well-known result of Schwartz should be mentioned: “If $T \in \mathcal{D}'$ and $T \ast \phi \in \mathcal{S}'$, then $T \in \mathcal{S}'$.”

In the proof we shall use Keller's method [3], and since it is not known whether $\text{lin}(\mathcal{D} \ast \mathcal{S})$ is equal to \mathcal{S}, this method is essential in our formulation of the problem.

As usual, \mathbb{N} is the set of strictly positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and $\mathbb{Z} = \mathbb{N}_0 \cup (-\mathbb{N})$. We denote by \mathcal{D}, \mathcal{S}, and \mathcal{D}_K, where K is a compact subset of the Euclidean space \mathbb{R}^n ($K \subseteq \mathbb{R}^n$), the well-known Schwartz testing-function spaces.

As in [8, Chapter I, §5], \mathcal{S}_k, $k \in \mathbb{N}_0$, is the completion of \mathcal{S} in the norm

Received by the editors February 9, 1989 and, in revised form, April 30, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 46F05.
Key words and phrases. Tempered distributions.

Recall that $\mathcal{S} = \bigcap_{k \in \mathbb{N}_0} \mathcal{S}_k$ with the projective topology obtained from the injections $\mathcal{S} \to \mathcal{S}_k$, $k \in \mathbb{N}_0$, $\mathcal{S}' = \bigcup_{k \in \mathbb{N}_0} \mathcal{S}'_k$ with the inductive topology obtained from the injections $\mathcal{S}'_k \to \mathcal{S}'$, $k \in \mathbb{N}_0$, and if a set is bounded in \mathcal{S}' then it belongs to some \mathcal{S}'_k and is bounded there. The norm in \mathcal{S}'_k is denoted by $\| \|_{-k}$, $k \in \mathbb{N}_0$.

For all the details we refer to [6] and [8].

Let us recall the Grothendieck theorem: "Let E be a locally convex Hausdorff space, F and F_i, $i \in \mathbb{N}$, Fréchet spaces. Let u be a continuous mapping $F \to E$ and u_i continuous mappings $F_i \to E$, $i \in \mathbb{N}$. If $u(F) \subset \bigcup_{i \in \mathbb{N}} u_i(F_i)$, then there exists some index i_0 such that $u(F) \subset u_{i_0}(F_{i_0})$.

For the proof of Theorem 1 we need the following lemma:

Lemma. With the assumptions on T_j as in Theorem 1, there exists $k \in \mathbb{N}$ such that, for every $K \in \mathbb{R}^n$, there exists a neighborhood U_K of 0 in \mathcal{S}_K and $B_K > 0$ such that $\phi \in U_K$ implies

\[(1) \quad \| (T_j * \phi)(x) \| \leq B_K (1 + |x|^k), \quad \text{for all } x \in \mathbb{R}^n \text{ and } j \in \mathbb{N}.

Proof of the lemma. First, we shall show that for every $\phi \in \mathcal{D}$ there are $k_\phi \in \mathbb{N}$ and $C_\phi > 0$ such that

\[(2) \quad \| (T_j * \phi)(x) \| \leq C_\phi (1 + |x|)^{k_\phi}, \quad x \in \mathbb{R}^n, \quad j \in \mathbb{N}.

From [5, Theorem 3] it follows that, for a given $\phi \in \mathcal{D}$, there are ψ_1, \ldots, ψ_N, $\theta_1, \ldots, \theta_N$ from \mathcal{D} such that

$$\phi = \psi_1 * \theta_1 + \cdots + \psi_N * \theta_N.$$

Sequences $T_j * \psi_j$, $j \in \mathbb{N}$, $k = 1, \ldots, N$, are bounded in \mathcal{S}' so [2, Theorem 13, p. 41] implies that there are sequences of continuous functions $H_{j,k}$, $j \in \mathbb{N}$, $k = 1, \ldots, N$, and nonnegative integers β_1, \ldots, β_N and m_1, \ldots, m_N such that

$$T_j * \psi_j = (1 + |x|^2)^{m_k} H_{j,k}^{(\beta_k)}$$

and

$$\sup_{x \in \mathbb{R}^n} |H_{j,k}(x)| < \infty, \quad k = 1, \ldots, N.$$

Thus, we get

$$T_j * \phi = (1 + |x|^2)^{m_1} H_{j,1}^{(\beta_1)} * \theta_1^{(\beta_1)} + \cdots + (1 + |x|^2)^{m_N} H_{j,N}^{(\beta_N)} * \theta_N^{(\beta_N)}, \quad j \in \mathbb{N},$$

from which (2) follows.
(2) implies that, for some $B_\phi > 0$,
\[\ln(||(T_j * \phi)(x)|| + 1) \leq B_\phi \ln(2 + |x|), \quad x \in \mathbb{R}^n, \ j \in \mathbb{N}. \]

Let Z be a fixed closed ball in \mathbb{R}^n, and let \mathcal{S}_b^N be the space of all bounded sequences of bounded continuous functions defined on \mathbb{R}^n supplied with the norm $\gamma(\{\alpha_j\}) = \sup_{x \in \mathbb{R}^n} |\alpha_j(x)|$.

We define the mapping h from \mathcal{S}_Z into \mathcal{S}_b^N by $h(\phi) = \{\alpha_j\}$, where
\[\alpha_j(x) = \ln((T_j * \phi)(x)| + 1)/\ln(2 + |x|), \quad x \in \mathbb{R}^n, \ j \in \mathbb{N}. \]

Let us prove that the mapping $\gamma \circ h$ is bounded on some neighborhood of zero in \mathcal{S}_Z. We have $\mathcal{S}_Z = \bigcup_{R > 0} \mathcal{S}_{Z,R}$, where
\[\mathcal{S}_{Z,R} = \{\phi \in \mathcal{S}_Z; \gamma(h(\phi)) \leq R\}, \quad R > 0. \]

Let ϕ belong to the closure of $\mathcal{S}_{Z,R}$ with respect to \mathcal{S}_Z. Since \mathcal{S}_Z is metrizable, there is a sequence $\phi_\nu, \nu \in \mathbb{N}$, from $\mathcal{S}_{Z,R}$ which converges to ϕ in \mathcal{S}_Z.

Fix $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. For any $\nu \in \mathbb{N}$, we have
\[(\ln((T_j * \phi_\nu)(x)| + 1)/\ln(2 + |x|)) \leq R. \]

From $T_j * \phi_\nu(x) \to T_j * \phi(x)$, $\nu \to \infty$, it follows that
\[(\ln((T_j * \phi)(x)| + 1)/\ln(2 + |x|)) \leq R. \]

Since j and x were arbitrarily chosen, we get that $\phi \in \mathcal{S}_{Z,R}$, and thus that $\mathcal{S}_{Z,R}$ is closed.

Because \mathcal{S}_Z is of second category, there is a neighborhood of zero in \mathcal{S}_Z, denoted by \mathcal{U}_Z, and a $D > 0$ such that
\[\gamma(h(\phi)) \leq D, \quad \phi = \mathcal{U}_Z. \]

So, for any $\phi \in \mathcal{U}_Z$, $j \in \mathbb{N}$, and $x \in \mathbb{R}^n$,
\[\ln((T_j * \phi)(x)| + 1) \leq D \ln(2 + |x|); \]
i.e., for a set \mathcal{U}_Z there are $k \in \mathbb{N}$ and $B_Z > 0$ such that $\phi \in \mathcal{U}_Z$ implies that
\[||(T_j * \phi)(x)|| \leq B_Z (1 + |x|)^k, \quad \text{for all } x \in \mathbb{R}^n, \ j \in \mathbb{N}. \]

Since \mathcal{U}_Z is absorbing in \mathcal{S}_Z, we get that, for any $\phi \in \mathcal{S}_Z$, there exists $B_\phi > 0$ such that

(3) \[||(T_j * \phi)(x)|| \leq B_\phi (1 + |x|)^k, \quad x \in \mathbb{R}^n, \ j \in \mathbb{N}. \]

Let $K \subset \mathbb{R}^n$ be an arbitrary compact set. Any ϕ from \mathcal{S}_K can be written in the form
\[\phi(x) = \sum_{i=1}^p \phi_i(x - \tau_i), \quad x \in \mathbb{R}^n, \]
where ϕ_i, $i = 1, \ldots, p$, are functions from \mathcal{D}_Z. This implies that
\[
|(T_j \ast \phi)(x)| \leq \sum_{i=1}^{p} |(T_j \ast \phi)(x - \tau_i)|, \quad x \in \mathbb{R}^n, \ j \in \mathbb{N}.
\]

Since
\[
|(T_j \ast \phi)(x - \tau_i)| \leq B_i (1 + |x - \tau_i|)^k \leq B_i (1 + |\tau_i|)^k (1 + |x|)^k, \quad x \in \mathbb{R}^n, \ j \in \mathbb{N},
\]
where B_i are suitable constants, $i = 1, \ldots, p$, we get that for any $\phi \in \mathcal{D}$ there exists a $B_\phi > 0$ such that (3) holds. Again, by using the fact that \mathcal{D}_K is of second category, it follows that there exist $B_K > 0$ and a neighborhood of zero \mathcal{V}_K such that
\[
|(T_j \ast \phi)(x)| \leq B_K (1 + |x|)^k, \quad x \in \mathbb{R}^n, \ j \in \mathbb{N}, \ \phi \in \mathcal{V}_K.
\]
Since K is arbitrary, the proof is complete.

Proof of Theorem 1. It is enough to prove that T_j, $j \in \mathbb{N}$, is a bounded sequence in \mathcal{S}'. Namely, for any ϕ, $\psi \in \mathcal{S}$ we have
\[
\langle T_j \ast \phi, \psi \rangle = \langle T_j, \phi \ast \psi \rangle, \quad j \in \mathbb{N} \quad (\phi(x) = \phi(-x), \ x \in \mathbb{R}^n),
\]
and since the linear hull of $\mathcal{S} \ast \mathcal{D}$ is equal to \mathcal{S}, we get that for any $\phi \in \mathcal{S}$, $\langle T_j, \phi \rangle \to 0$, $j \to \infty$. Now, by the boundedness of T_j in \mathcal{S}' and [7, Theorem 33.2 and Corollary 1, p. 356] the assertion will follow.

As in [3, p. 88], we put
\[
E_k = \left\{ a \equiv \{a_{jq} \}, \ j \in \mathbb{N}, \ q \in \mathbb{Z}^n, \ a_{jq} \in \mathbb{C} ; \right. \\
\|a\|_k = \sup_{j, q} |a_{jq}|((1 + |q|) \ln(1 + j))^{-k} \leq \infty \right\}, \quad k > 0,
\]
and
\[
E = \lim \inf_{k \to \infty} E_k.
\]

Let $e \in \mathcal{D}$ have the properties $e(x) = 1$, $x \in I^n$, $I = [-1, 1]$, $\text{supp } e \subset J^n$, $J = [-3/2, 3/2]$, and let $e_q(x) = e(x + q)$, $x \in \mathbb{R}^n$, $q \in \mathbb{Z}^n$. We shall prove that the mapping u defined on \mathcal{S} by
\[
(4) \quad \mathcal{S} \ni \psi \to u(\psi) = \{a_{jq} \} = \{ \langle T_j(t)e(t + q), \psi(t) \rangle \}, \quad j \in \mathbb{N}, \ q \in \mathbb{Z}^n,
\]
is continuous from \mathcal{S} to E. Then Grothendieck's theorem implies that
\[
u(\mathcal{S}) \subset E_s \text{ for some } s > 0.
\]

By Keller's construction [3, p. 89], in which the definition of the norm in E_k is essential, this implies that $\{T_j, j \in \mathbb{N}\}$ is a bounded subset of \mathcal{S}'.

Let us prove that
\[
(5) \quad \{ T_j(\cdot)e(\cdot + q)/(1 + |q|)^k, \ j \in \mathbb{N}, \ q \in \mathbb{Z}^n \},
\]
where $k \in \mathbb{N}$, from the lemma, is bounded in \mathcal{S}'.
Let $K = \text{supp} \hat{e}$ and \mathcal{U}_K be a neighborhood of zero in \mathcal{D}_K for which (1) holds. Since the sets of the form

$$\mathcal{V}(m, \varepsilon) = \left\{ \phi \in \mathcal{D}_K, \sup_{x \in K} \sum_{|\alpha| \leq m} |\phi^{(\alpha)}(x)| < \varepsilon \right\}, \quad m \in \mathbb{N}_0, \varepsilon > 0,$$

form a basis of neighborhoods of zero in \mathcal{D}_K, we have that for some $m \in \mathbb{N}_0$ and $\varepsilon > 0$, $\mathcal{V}(m, \varepsilon) \subset \mathcal{U}_K$. Fix $\psi \in \mathcal{S}$. Let $a \in \mathbb{R}^n$, $\alpha \in \mathbb{N}_0^n$. We have

$$\sup_{i \in \mathcal{K}} |(\tilde{\psi}(t - a)\hat{e}(t))^{(\alpha)}| \leq 2|\alpha| \sup_{i \in \mathcal{K}} |\tilde{\psi}^{(i)}(t - a)| \sup_{i \in \mathcal{K}} |\hat{e}^{(i)}(t)|,$$

where $i \leq \alpha$ means that the components of i are \leq the corresponding components of α. For any $i \leq \alpha$, $\tilde{\psi}^{(i)}$ and $\hat{e}^{(i)}$ are bounded on \mathbb{R}^n. This implies that there is a $C_{\psi, \alpha}$ such that

$$\sup_{i \in \mathcal{K}} |(\psi(t - a)e(t))^{(\alpha)}| \leq C_{\psi, \alpha}.$$

So, for $M = Ae^{-1} \max\{C_{\psi, \alpha}; |\alpha| \leq m\}$, where A is the number of α, $|\alpha| \leq m$, all the functions

$$\mathbb{R}^n \ni t \to \frac{1}{M} \tilde{\psi}(t - a)\hat{e}(t), \quad a \in \mathbb{R}^n,$$

are from $\mathcal{V}(m, \varepsilon)$ and, for any $a \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $j \in \mathbb{N}$, we have

$$\left| \frac{1}{(1 + |x|)^k} \left(T_j(t) * \left(\frac{1}{M} \tilde{\psi}(t - a)\hat{e}(t) \right) \right)(x) \right| = \frac{1}{M(1 + |x|)^k} |T_j(t), \tilde{\psi}(x - t - a)\hat{e}(x - t)| < B_K.$$

Take $x = a = -q \in \mathbb{Z}^n$. The boundedness of (5) in \mathcal{S}' follows from

$$\left| \frac{1}{(1 + |q|)^k} \langle T_j(t), \tilde{\psi}(-t)\hat{e}(-q - t) \rangle \right| = \frac{1}{(1 + |q|)^k} |\langle T_j(t)\hat{e}(t + q), \tilde{\psi}(t) \rangle| < MB_K.$$

So we have that for some k_0 (i.e., in some \mathcal{S}'_{k_0}) and some $C > 0$,

$$\|T_j(\cdot)e(\cdot + q)/(1 + |q|)^k\|_{-k_0} < C, \quad j \in \mathbb{N}, \quad q \in \mathbb{Z}^n.$$

This implies for the mapping u defined by (4) that, for every $j \in \mathbb{N}$ and $q \in \mathbb{Z}^n$,

$$|a_{jq}| \leq C(1 + |q|)^k \|\psi\|_{k_0}.$$

It follows that u is continuous from \mathcal{S} into E. This completes the proof.
ACKNOWLEDGMENTS

I am grateful to the referee for all the suggestions which improved the paper. This material is based on work supported by the United States–Yugoslavia Joint Fund for Scientific and Technological Cooperation in cooperation with the NSF under Grant JF 838.

REFERENCES

Institute of Mathematics, University of Novi Sad, 21000 Novi Sad, Dr Ilije Djuričica 4, Yugoslavia