On the convergence in $\mathcal {S}â$
HTML articles powered by AMS MathViewer
- by Stevan PilipoviÄ
- Proc. Amer. Math. Soc. 111 (1991), 949-954
- DOI: https://doi.org/10.1090/S0002-9939-1991-1050022-X
- PDF | Request permission
Abstract:
We prove the following assertion: Let ${T_j},j \in \mathbb {N}$, be a sequence in $\mathcal {S}â$ such that ${T_j} * \phi$ converges to 0 in $\mathcal {S}â$ as $j \to \infty$, for any $\phi \in \mathcal {D}$. Then ${T_j} \to 0$ in $\mathcal {S}â$ as $j \to \infty$.References
- Jacques Dixmier and Paul Malliavin, Factorisations de fonctions et de vecteurs indĂ©finiment diffĂ©rentiables, Bull. Sci. Math. (2) 102 (1978), no. 4, 307â330 (French, with English summary). MR 517765
- Avner Friedman, Generalized functions and partial differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0165388
- Klaus Keller, Some convergence properties of convolutions, Studia Math. 77 (1983), no. 1, 87â94. MR 738046, DOI 10.4064/sm-77-1-87-94
- Hana PetzeltovĂĄ and Pavla VrbovĂĄ, Factorization in the algebra of rapidly decreasing functions on $\textbf {R}^{n}$, Comment. Math. Univ. Carolin. 19 (1978), no. 3, 489â499. MR 508956
- L. A. Rubel, W. A. Squires, and B. A. Taylor, Irreducibility of certain entire functions with applications to harmonic analysis, Ann. of Math. (2) 108 (1978), no. 3, 553â567. MR 512433, DOI 10.2307/1971188
- Laurent Schwartz, ThĂ©orie des distributions, Publications de lâInstitut de MathĂ©matique de lâUniversitĂ© de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle Ă©dition, entiĂ©rement corrigĂ©e, refondue et augmentĂ©e. MR 0209834
- François TrÚves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- V. S. Vladimirov, Obobshchennye funktsii v matematicheskoÄ fizike, Sovremennye Fiziko-Tekhnicheski Problemy. [Contemporary Problems in Physics and Engineering], âNaukaâ, Moscow, 1979 (Russian). Second edition, corrected and supplemented. MR 549767
- JĂŒrgen Voigt, Factorization in some FrĂ©chet algebras of differentiable functions, Studia Math. 77 (1984), no. 4, 333â348. MR 741451, DOI 10.4064/sm-77-4-333-348
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 949-954
- MSC: Primary 46F05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1050022-X
- MathSciNet review: 1050022