Stability in interpolation of families of Banach spaces
HTML articles powered by AMS MathViewer
- by Wei Cao and Yoram Sagher
- Proc. Amer. Math. Soc. 112 (1991), 91-100
- DOI: https://doi.org/10.1090/S0002-9939-1991-1031449-9
- PDF | Request permission
Abstract:
Let $D$ be a simply connected domain in the complex plane whose boundary $\Gamma$ is a rectifiable simple closed curve. Let $\left \{ {A(\gamma )/\gamma \in \Gamma } \right \}$ and $\left \{ {B(\gamma )/\gamma \in \Gamma } \right \}$ be interpolation families of Banach spaces. Let $T$ be a linear operator mapping $A(\gamma )$ continuously into $B(\gamma )$. For $z \in D$ let ${T_z}$ be the restriction of $T$ to the interpolation space ${A_z}$. Then $\{ z \in D/\operatorname {cod}(T_z) = d < \infty$ and $\dim \operatorname {Ker}({T_z}) = 0 \}$ and $\{ z \in D/\dim \operatorname {Ker}(T_z) = d < \infty$ and $T_z$ is onto $B_z\}$ are open sets.References
- Ernst Albrecht, Spectral interpolation, Spectral theory of linear operators and related topics (Timişoara/Herculane, 1983) Oper. Theory Adv. Appl., vol. 14, Birkhäuser, Basel, 1984, pp. 13–37. MR 789606 J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, New York and Berlin, 1976.
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190 W. Cao and Y. Sagher, Stability of Fredholm properties in interpolation scales, Ark. für Mat. (to appear).
- R. R. Coifman, R. Rochberg, G. Weiss, M. Cwikel, and Y. Sagher, The complex method for interpolation of operators acting on families of Banach spaces, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 123–153. MR 576042
- R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. in Math. 43 (1982), no. 3, 203–229. MR 648799, DOI 10.1016/0001-8708(82)90034-2
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- I. Ja. Šneĭberg, Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled. 9 (1974), no. 2(32), 214–229, 254–255 (Russian). MR 0634681
- G. Szegö, Über die Randwerte einer analytischen Funktion, Math. Ann. 84 (1921), no. 3-4, 232–244 (German). MR 1512033, DOI 10.1007/BF01459407
- Anita Tabacco Vignati and Marco Vignati, Spectral theory and complex interpolation, J. Funct. Anal. 80 (1988), no. 2, 383–397. MR 961906, DOI 10.1016/0022-1236(88)90008-0
- Misha Zafran, Spectral theory and interpolation of operators, J. Functional Analysis 36 (1980), no. 2, 185–204. MR 569253, DOI 10.1016/0022-1236(80)90099-3
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 91-100
- MSC: Primary 46M35; Secondary 46B20, 46E99, 47A53
- DOI: https://doi.org/10.1090/S0002-9939-1991-1031449-9
- MathSciNet review: 1031449