A characterization of the dual of the classical Lorentz sequence space $d(w,q)$
HTML articles powered by AMS MathViewer
- by Miguel A. Ariño and Benjamin Muckenhoupt
- Proc. Amer. Math. Soc. 112 (1991), 87-89
- DOI: https://doi.org/10.1090/S0002-9939-1991-1031661-9
- PDF | Request permission
Abstract:
A new proof is given that regularity of $w$ implies that the dual of the classical Lorentz sequence space $d(w,q)$ is the nonclassical $d({w^{ - q’/q}},q’)$, where $1/q + 1/q’ = 1$. It is also shown that regularity is necessary for this equality to hold.References
- G. D. Allen, Duals of Lorentz spaces, Pacific J. Math. 77 (1978), no. 2, 287–291. MR 510924, DOI 10.2140/pjm.1978.77.287
- D. J. H. Garling, A class of reflexive symmetric BK-spaces, Canadian J. Math. 21 (1969), 602–608. MR 410331, DOI 10.4153/CJM-1969-068-0
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 87-89
- MSC: Primary 46A45; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1991-1031661-9
- MathSciNet review: 1031661