THE HYPERSPACES OF SUBCONTINUA OF THE PSEUDO-ARC
AND OF SOLENOIDS OF PSEUDO-ARCS
ARE CANTOR MANIFOLDS

PAWEL KRUPSKI

(Communicated by James E. West)

ABSTRACT. New proofs of the above facts are based on specific homogeneity
properties of the pseudo-arc and of solenoids of pseudo-arcs.

The reader is referred to [5] for hyperspace theory. It is known that if \(X \)
the pseudo-arc or a solenoid of pseudo-arcs (see [7] for the definition), then
the hyperspace \(C(X) \) of all nonvoid subcontinua of \(X \) is 2-dimensional. It is
proved in [6] that if \(X \) is the pseudo-arc, then \(C(X) \) is also a Cantor manifold, i.e., no 0-dimensional subset separates \(C(X) \). In [2] a general theorem is
presented that \(C(X) \) has this property for an arbitrary metric, nondegenerate
continuum \(X \). Our proof of the theorem in the title is an application of the
following result [3].

Lemma 1. If \(X \) is an \(n \)-dimensional, locally compact, connected, homogeneous,
metric space, then no \((n - 2)\)-dimensional subset separates \(X (n \geq 1) \).

Lemma 2. If a dense, connected subset of a metric separable space \(X \) is separated
by no \(n \)-dimensional subset, then the space \(X \) has the same property. \(\Box \)

(1) Let \(X \) be the pseudo-arc. To show that \(C(X) \) is a Cantor manifold it
suffices to observe, by Lemmas 1 and 2, that the subspace \(Y \subset C(X) \) of all
nondegenerate, proper subcontinua of \(X \) is connected, locally compact, homogeneous (see [1]), as well as 2-dimensional and dense.

(2) Let \(X \) be a solenoid of pseudo-arcs with the continuous decomposition
\(D \) into pseudo-arcs such that \(X/D \) is a solenoid \(S \). The set \(D \) as a subspace
of \(C(X) \) is homeomorphic to \(S \). As in (1) the open subspace \(Y \) of \(C(X) \)
is connected and dense. The set \(Y \setminus D \) is dense in \(Y \) and is the union of two
disjoint, open, connected, 2-dimensional subsets \(M = \{ y \in Y : d \neq y \subset d \in D \} \).
and \(N = \{ y \in Y : d \neq y \supset d \in D \} \). It follows from [4] and from properties of solenoids of pseudo-arcs [7] that for every pair \(y_1, y_2 \in M(y_1, y_2 \in N) \) there exists a homeomorphism \(h : X \to X \) such that \(h(y_1) = h(y_2) \). The induced homeomorphism \(\hat{h} : C(X) \to C(X) \) satisfies \(\hat{h}(M) = M, \hat{h}(N) = N \) and \(\hat{h}(y_1) = y_2 \), so both \(M \) and \(N \) are homogeneous and, by Lemma 1, no 0-dimensional subset separates neither \(M \) nor \(N \). Suppose a 0-dimensional subset \(C \) separates \(Y \). Without loss of generality we may assume that \(C \) is a closed subset of \(Y \). It means \(Y \setminus C = A \cup B \), where \(A, B \) are nonvoid, disjoint and open subsets of \(C(X) \). In view of the above properties of \(M \) and \(N \) we may assume \(M \subseteq A \) and \(N \subseteq B \). Thus \(C \subseteq D \). If there is \(d \in D \setminus C \), then some order arc \(\alpha \subseteq C(X) \) passing through \(d \) joins \(M \) and \(N \), which is impossible, since \(\alpha \cap D = \{d\} \) and \(C \) separates \(Y \) between \(M \) and \(N \). Therefore \(C = D \), hence \(C \) is not 0-dimensional, a contradiction.

Remark. A similar proof works for \(X \) being a solenoid. However in this case \(C(X) \) is the cone over \(X \), which is evidently a Cantor manifold.

References