The hyperspaces of subcontinua of the pseudo-arc and of solenoids of pseudo-arcs are Cantor manifolds
HTML articles powered by AMS MathViewer
- by Paweł Krupski
- Proc. Amer. Math. Soc. 112 (1991), 209-210
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037212-7
- PDF | Request permission
Abstract:
New proofs of the above facts are based on specific homogeneity properties of the pseudo-arc and of solenoids of pseudo-arcs.References
- H. Cook, A locally compact, homogeneous metric space which is not bihomogeneous, Proceedings of the 1986 topology conference (Lafayette, La., 1986), 1986, pp. 25–27. MR 898013
- J. Krasinkiewicz, No $0$-dimensional set disconnects the hyperspace of a continuum, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 755–758 (English, with Russian summary). MR 307201
- PawełKrupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), no. 4, 1135–1142. MR 1009992, DOI 10.1090/S0002-9939-1990-1009992-7
- G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. Amer. Math. Soc. 98 (1961), 369–394. MR 120608, DOI 10.1090/S0002-9947-1961-0120608-0
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- Togo Nishiura and Choon Jai Rhee, The hyperspace of a pseudoarc is a Cantor manifold, Proc. Amer. Math. Soc. 31 (1972), 550–556. MR 290337, DOI 10.1090/S0002-9939-1972-0290337-4
- James T. Rogers Jr., Solenoids of pseudo-arcs, Houston J. Math. 3 (1977), no. 4, 531–537. MR 464193
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 209-210
- MSC: Primary 54B20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037212-7
- MathSciNet review: 1037212