Maximal Cohen-Macaulay modules and the quasihomogeneity of isolated Cohen-Macaulay singularities
HTML articles powered by AMS MathViewer
- by Alex Martsinkovsky
- Proc. Amer. Math. Soc. 112 (1991), 9-18
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042270-X
- PDF | Request permission
Abstract:
We conjecture that a complete isolated Cohen-Macaulay singularity of dimension $\geq 2$ is graded if and only if sufficiently high syzygy modules of the residue field and of the transpose of the module of Kähler differentials are isomorphic. The "only if" part of the conjecture is proved for hypersurface singularities.References
- M. Auslander, Cohen-Macaulay approximations, lecture notes of a course given at Brandeis University, Fall 1987.
- Maurice Auslander and Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) 38 (1989), 5–37 (English, with French summary). Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044344
- Maurice Auslander and Idun Reiten, The Cohen-Macaulay type of Cohen-Macaulay rings, Adv. in Math. 73 (1989), no. 1, 1–23. MR 979585, DOI 10.1016/0001-8708(89)90057-1
- Kurt Behnke, On Auslander modules of normal surface singularities, Manuscripta Math. 66 (1989), no. 2, 205–223. MR 1027308, DOI 10.1007/BF02568491
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- David Eisenbud and Jürgen Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347–352. MR 929541, DOI 10.1007/BF01456058
- Ernst Kunz, Almost complete intersections are not Gorenstein rings, J. Algebra 28 (1974), 111–115. MR 330158, DOI 10.1016/0021-8693(74)90025-8 A. Martsinkovsky, Almost split sequences and Zariski differentials, Thesis, Brandeis Univ., 1987.
- Alex Martsinkovsky, Almost split sequences and Zariski differentials, Trans. Amer. Math. Soc. 319 (1990), no. 1, 285–307. MR 955490, DOI 10.1090/S0002-9947-1990-0955490-0
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123–142 (German). MR 294699, DOI 10.1007/BF01405360
- Günter Scheja and Hartmut Wiebe, Über Derivationen von lokalen analytischen Algebren, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972) Academic Press, London, 1973, pp. 161–192 (German). MR 0338461
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
- Bernard Teissier, The hunting of invariants in the geometry of discriminants, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 565–678. MR 0568901
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 9-18
- MSC: Primary 13C14; Secondary 13D02
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042270-X
- MathSciNet review: 1042270