Steenrod algebra module maps from $H^ *(B(\textbf {Z}/p)^ n)$ to $H^ *(B(\textbf {Z}/p)^ s)$
HTML articles powered by AMS MathViewer
- by John C. Harris, Thomas J. Hunter and R. James Shank
- Proc. Amer. Math. Soc. 112 (1991), 245-257
- DOI: https://doi.org/10.1090/S0002-9939-1991-1047010-6
- PDF | Request permission
Abstract:
Let ${H^{ \otimes n}}$ denote the $\operatorname {mod}-p$ cohomology of the classifying space $B{({\mathbf {Z}}/p)^n}$ as a module over the Steenrod algebra $\mathcal {A}$. Adams, Gunawardena, and Miller have shown that the $n \times s$ matrices with entries in ${\mathbf {Z}}/p$ give a basis for the space of maps ${\text {Ho}}{{\text {m}}_\mathcal {A}}({H^{ \otimes n}},{H^{ \otimes s}})$. For $n$ and $s$ relatively prime, we give a new basis for this space of maps using recent results of Campbell and Selick. The main advantage of this new basis is its compatibility with Campbell and Selick’s direct sum decomposition of ${H^{ \otimes n}}$ into $({p^n} - 1)$ $\mathcal {A}$-modules. Our applications are at the prime two. We describe the unique map from $\bar H$ to $D(n)$, the algebra of Dickson invariants in ${H^{ \otimes n}}$, and we give the dimensions of the space of maps between the indecomposable summands of ${H^{ \otimes 3}}$.References
- J. F. Adams, J. H. Gunawardena, and H. Miller, The Segal conjecture for elementary abelian $p$-groups, Topology 24 (1985), no. 4, 435–460. MR 816524, DOI 10.1016/0040-9383(85)90014-X
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- H. E. A. Campbell and P. S. Selick, Polynomial algebras over the Steenrod algebra, Comment. Math. Helv. 65 (1990), no. 2, 171–180. MR 1057238, DOI 10.1007/BF02566601
- Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75–98. MR 1500882, DOI 10.1090/S0002-9947-1911-1500882-4
- D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425–475. MR 476841, DOI 10.1016/0021-8693(78)90116-3
- John C. Harris, On certain stable wedge summands of $B(\textbf {Z}/p)^n_+$, Canad. J. Math. 44 (1992), no. 1, 104–118. MR 1152669, DOI 10.4153/CJM-1992-006-8
- John C. Harris and Nicholas J. Kuhn, Stable decompositions of classifying spaces of finite abelian $p$-groups, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 3, 427–449. MR 932667, DOI 10.1017/S0305004100065038
- Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594. MR 1758754, DOI 10.1090/S0894-0347-00-00332-5
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Nicholas J. Kuhn, The rigidity of $L(n)$, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 286–292. MR 922931, DOI 10.1007/BFb0078746
- Nicholas J. Kuhn, The Morava $K$-theories of some classifying spaces, Trans. Amer. Math. Soc. 304 (1987), no. 1, 193–205. MR 906812, DOI 10.1090/S0002-9947-1987-0906812-8 —, Transpose duality and Carlsson’s injectives, in preparation. —, private correspondence.
- J. Lannes, Sur la cohomologie modulo $p$ des $p$-groupes abéliens élémentaires, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 97–116 (French). MR 932261
- Jean Lannes and Saïd Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1987), no. 1, 25–59 (French). MR 871217, DOI 10.1007/BF01168004
- Stephen A. Mitchell and Stewart B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), no. 3, 285–298. MR 710102, DOI 10.1016/0040-9383(83)90014-9 R. J. Shank, Polynomial algebras over the Steenrod algebra, summands of ${H^*}(B{({\mathbf {Z}}/{\mathbf {2Z}})^s})$ and Lannes’ division functors, Ph.D. thesis, University of Toronto, 1989. —, Symmetric algebras over the Steenrod algebra and Lannes’ $T$ functor, preprint, 1989.
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. MR 711066, DOI 10.1090/conm/019/711066
- R. M. W. Wood, Splitting $\Sigma (\textbf {C}\textrm {P}^\infty \times \cdots \times \textbf {C}\textrm {P}^\infty )$ and the action of Steenrod squares $\textrm {Sq}^i$ on the polynomial ring $F_2[x_1,\cdots ,x_n]$, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 237–255. MR 928837, DOI 10.1007/BFb0083014
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 245-257
- MSC: Primary 55S10; Secondary 55R35
- DOI: https://doi.org/10.1090/S0002-9939-1991-1047010-6
- MathSciNet review: 1047010