A CERTAIN CLASS OF TRIANGULAR ALGEBRAS
IN TYPE II₁ HYPERFINITE FACTORS

RICHARD BAKER

(Communicated by Paul S. Muhly)

Abstract. Let \(\mathcal{T} \) be the standard triangular UHF algebra in a UHF algebra \(\mathcal{A} \), where the rank of \(\mathcal{A} \) is a strictly increasing sequence of positive integers. Let \(\mathcal{M} \) be the type II₁ hyperfinite factor defined as the weak closure of \(\mathcal{T} \) in the tracial representation of \(\mathcal{A} \). Define \(\mathcal{I} \) to be the weak closure of \(\mathcal{T} \) in this representation. Then \(\mathcal{I} \) is a reflexive, maximal weakly closed triangular algebra in \(\mathcal{M} \). Moreover, \(\mathcal{I} \) is irreducible relative to \(\mathcal{M} \). We exhibit a strongly closed sublattice \(\mathcal{L} \) of \(\text{lat}\mathcal{I} \) such that \(\mathcal{I} = \text{alg}\mathcal{L} \).

1. Introduction

Let \(\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{M}_n \) be a \(C^* \)-algebra of rank \((p_n) \), where \((p_n) \) is a strictly increasing sequence of positive integers. Assume that the embeddings of the \(\mathcal{M}_n \) are standard. Define \(\mathcal{T} = \bigcup_{n=1}^{\infty} \mathcal{T}_n \) to be the standard triangular UHF algebra in \(\mathcal{A} \), where \(\mathcal{T}_n \) is the full algebra of upper triangular matrices in \(\mathcal{M}_n \). Let \(\{\pi, \mathcal{H}_\pi\} \) be the tracial representation of \(\mathcal{A} \), and let \(\mathcal{M} \) be the type II₁ hyperfinite factor defined as the weak closure of \(\mathcal{A} \) in \(B(\mathcal{H}_\pi) \). In this paper we study the algebra \(\mathcal{I} = \mathcal{I}^w \), the weak closure of \(\mathcal{I} \) in \(B(\mathcal{H}_\pi) \). We show that \(\mathcal{I} \) is a reflexive, maximal weakly closed triangular algebra in \(\mathcal{M} \). Moreover, we prove that \(\mathcal{I} \) is irreducible relative to \(\mathcal{M} \); i.e., \(\mathcal{M} \cap (\text{lat}\mathcal{I}) = \{0, 1\} \), where \(\text{lat}\mathcal{I} \) is the lattice of all \(\mathcal{I} \)-invariant projections in \(B(\mathcal{H}_\pi) \). We exhibit a strongly closed sublattice \(\mathcal{L} \) of \(\text{lat}\mathcal{I} \) with the property that \(\mathcal{I} = \text{alg}\mathcal{L} \).

The following two theorems are the main results of this paper:

Theorem I. Let \(\mathcal{D}_n \) be the diagonal of the algebra \(\mathcal{M}_n \), and \(\mathcal{E} = \bigcup_{n=1}^{\infty} \mathcal{D}_n^w \). Then \(\mathcal{I} \) is a maximal weakly closed triangular algebra in \(\mathcal{M} \) with diagonal \(\mathcal{D} = \mathcal{E}^w \). Moreover, \(\mathcal{I} \) is irreducible relative to \(\mathcal{M} \). Finally, \(\mathcal{I} \) is a reflexive algebra in \(B(\mathcal{H}_\pi) \).

Received by the editors November 30, 1989.
Key words and phrases. Triangular algebras, hyperfinite factors.
This work was supported by an NSF Award.
Theorem II. For each left ideal \(\mathcal{I} \) of \(\mathcal{P} \), let \(P_\mathcal{I} \) be the projection in \(B(\mathcal{H}_x) \) determined by the subspace \(M_\mathcal{I} \), where
\[
M_\mathcal{I} = \bigvee \{ \xi_x | x \in \mathcal{I} \}.
\]
Here \(\xi_x \) is the vector in \(\mathcal{H}_x \) corresponding to the element \(x \in \mathcal{A} \). Then \(P_\mathcal{I} \) is \(\mathcal{I} \)-invariant. Moreover, let \(\mathcal{P} \) be defined as
\[
\mathcal{P} = \{ P_\mathcal{I} | \mathcal{I} \text{ is a left ideal of } \mathcal{P} \},
\]
and define \(\mathcal{L} \) to be the strongly closed subspace lattice in \(B(\mathcal{H}_x) \) generated by \(\mathcal{P} \cup \text{lat} \mathcal{M} \). Then \(\mathcal{L} \subseteq \text{lat} \mathcal{I} \) and \(\mathcal{I} = \text{alg} \mathcal{L} \).

2. Triangularity and maximal properties of \(\mathcal{I} \)

In this section we prove the first part of Theorem I, namely that the algebra \(\mathcal{Y} \) is a maximal weakly closed triangular algebra in \(\mathcal{M} \) with diagonal \(\mathcal{D} \). The main tool developed in this section is presented in Theorem 2.6. In that theorem we construct a family of functions \(\varphi_n : \mathcal{M} \to \mathcal{M}_n \otimes \mathcal{D}^{(n)} \), where \(\mathcal{D}^{(n)} = \bigcup_{k \geq n} M_n \otimes \mathcal{D}_k \) and \(M_n \) is the commutant of \(M_n \) in \(\mathcal{M} \). These functions will allow us to approximate elements of \(\mathcal{M} \) by elements of the subalgebras \(\mathcal{M}_n \otimes \mathcal{D}^{(n)} \). Our construction of the functions \(\varphi_n \) is a direct adaptation of the construction found in [P, Lemma 1.2]. We will need the following three lemmas concerning the factor \(\mathcal{M} :

Convention. Henceforth, if \(\mathcal{K} \) is a subset of \(\mathcal{M} \), then \(\mathcal{K}^{**}_2 \) will denote the \(\| \cdot \|_2 \)-closure of \(\mathcal{K} \) in \(\mathcal{M} \).

Lemma 2.1 ([MVN, 1.6.1]). Let \(\mathcal{B} \) be a \(* \)-subalgebra of \(\mathcal{M} \). Then \(\mathcal{B}^{**}_2 = \mathcal{B}^w \). Moreover, for each \(x \in \mathcal{B} \), there exists a sequence \((x_n) \) in \(\mathcal{B} \) such that
\[
\text{sup}_n \|x_n\| < \infty \quad \text{and} \quad x_n = \| \cdot \|_2 \text{-lim}_n x_n.
\]

Lemma 2.2 ([T, III.5.3]). The \(\sigma \)-strong topology on the unit ball of \(\mathcal{M} \) is metrized by the trace norm \(\| \cdot \|_2 \). Moreover, this metric is complete.

Lemma 2.3 ([MVN, 1.3.2]). Let \(x \in \mathcal{M} \), and let \((x_n) \) be a sequence in \(\mathcal{M} \). Then \(x = s\text{-lim}_n x_n \) if and only if \(x = \| \cdot \|_2 \text{-lim}_n x_n \) and \(\text{sup}_n \|x_n\| < \infty \).

The next result is modeled on [SV, Lemma I.1.6].

Theorem 2.4. Let \(n \) be a positive integer, and let \(\mathcal{M}_n^c \) denote the commutant of \(\mathcal{M}_n \) in \(\mathcal{M} \). Then we have
\[
\mathcal{M}_n^c = \bigcup_{k \geq n} \mathcal{M}_n^c \cap \mathcal{M}_k^{uw}.
\]

Proof. For each \(n \), let \(\{ e^{(n)}_{ij} \} \) be the standard system of matrix units for \(\mathcal{M}_n \). By Lemma 2.1, it suffices to prove that
\[
(*) \quad \mathcal{M}_n^c = \bigcup_{k \geq n} \mathcal{M}_n^c \cap \mathcal{M}_k^{ll_2}.
\]
To prove (*), fix n and define the mapping $Q_n : \mathcal{M} \to \mathcal{M}$ as follows:

$$Q_n(x) = \sum_{i=1}^{p_n} e_{i1}^{(n)} x e_{i1}^{(n)}, \quad \forall x \in \mathcal{M}.$$

For $k \geq n$, $Q_n(\mathcal{M}_k) \subseteq \mathcal{M}_n^c \cap \mathcal{M}_k$. Let $x \in \mathcal{M}_n^c$. Then $Q_n(x) = x$. By Lemma 2.1, we have $x = \| \cdot \|_2^2 \lim_{k \geq n} x_k$, where (x_k) is some sequence in \mathcal{M} such that $x_k \in \mathcal{M}_k$. Then $x = \| \cdot \|_2^2 \lim_{k \geq n} Q_n(x_k)$. For $k \geq n$, $Q_n(x_k) \in \mathcal{M}_n^c \cap \mathcal{M}_k$; hence,

$$x \in \bigcup_{k \geq n} \| \cdot \|_2^2 \mathcal{M}_n^c \cap \mathcal{M}_k.$$

This proves (*). \qed

Theorem 2.5. For $n \geq 1$, we have

$$\mathcal{M} = \text{span}\{v x | v \in \mathcal{M}_n, x \in \mathcal{M}_n^c\}.$$

Proof. Use Theorem 2.4 to write

$$\mathcal{M}_n^c = \bigcup_{k \geq n} \mathcal{M}_n^c \cap \mathcal{M}_k,$$

and then imitate the proof of the analogous result in [P, p. 316]. \qed

We are now ready to present the construction of the functions φ_n.

Theorem 2.6. Let $1 \leq n \leq k$ be positive integers. Let g_1, \ldots, g_p be the minimal projections in $\mathcal{M}_n^c \cap \mathcal{D}_k$. Define the map $\varphi_{nk} : \mathcal{M} \to \mathcal{M}$ by

$$\varphi_{nk}(x) = \sum_{i=1}^{p} g_i x g_i, \quad x \in \mathcal{M}.$$

Then the following conditions hold.

(a) For all $x \in \mathcal{M}$, $\|\varphi_{nk}(x)\| \leq \|x\|$ and $\|\varphi_{nk}(x)\|_2 \leq \|x\|_2$.

(b) For all $x \in \mathcal{M}$, the limit $\varphi_n(x) = \| \cdot \|_2^2 \lim_{k \geq n} \varphi_{nk}(x)$ exists and may be written as

$$\varphi_n(x) = \sum_{i,j=1}^{p_n} e_{ij}^{(n)} d_{ij}, \quad d_{ij} \in \mathcal{D}^{(n)}.$$

(c) For all $x \in \mathcal{M}$, $\|\varphi_n(x)\| \leq \|x\|$ and $\varphi_n(x) = \text{s-lim}_{k \geq n} \varphi_{nk}(x)$.

(d) For all $x \in \mathcal{M}$, $x = \text{s-lim}_{k \geq n} \varphi_n(x)$.

Proof. Fix $x \in \mathcal{M}$, and let $k \geq n$. Because the g_i are orthogonal projections with sum 1, we have $\|\varphi_{nk}(x)\| \leq \|x\|$. Now, if $x \in \bigcup_{m=1}^{M} \mathcal{M}_m$, then $\|\varphi_{nk}(x)\|_2 \leq \|x\|_2$. By Lemma 2.1, $\mathcal{M} = \bigcup_{m=1}^{M} \mathcal{M}_m \| \cdot \|_2$; hence, for arbitrary $x \in \mathcal{M}$, we have $\|\varphi_{nk}(x)\| \leq \|x\|_2$. This proves (a).

To prove (b), use Theorem 2.5 to write $x = \sum_{i,j=1}^{p_n} e_{ij}^{(n)} x_{ij}$, $x_{ij} \in \mathcal{M}_n^c$. Now
use Theorem 2.4 and Lemma 2.1 to write \(x_{ij} = \| \cdot \|_2^{-\lim_{k \to \infty} x_{ij}^{(k)}}, \ x_{ij}^{(k)} \in \mathcal{M}_n \cap \mathcal{D}_n, \ \sup_{k \geq n} \| x_{ij}^{(k)} \| < \infty. \) Then \(\varphi_{nk}(x_{ij}^{(k)}) \in \mathcal{M}_n \cap \mathcal{D}_k. \) By (a), \((\varphi_{nk}(x_{ij}^{(k)}))_{k \geq n} \) is a norm-bounded \(\| \cdot \|_2 \)-Cauchy sequence; hence Lemma 2.2 implies that there exists \(\varphi_n(x_{ij}) \in \mathcal{D}^{(n)} \) such that \(\varphi_n(x_{ij}) = \| \cdot \|_2^{-\lim_{k \to \infty} \varphi_{nk}(x_{ij}^{(k)}).} \) We then have \(\varphi_n(x_{ij}) = \| \cdot \|_2^{-\lim_{k \to \infty} \varphi_{nk}(x_{ij}^{(k)}).} \) Define \(\varphi_n(x) \) by

\[
\varphi_n(x) = \sum_{i, j=1}^{p_n} e_{ij}^{(n)} d_{ij}, \quad d_{ij} = \varphi_n(x_{ij}) \in \mathcal{D}^{(n)}.
\]

Then the limit \(\| \cdot \|_2^{-\lim_{k \to \infty} \varphi_n(x)} \) exists and is equal to \(\varphi_n(x). \) This proves (b).

Condition (c) is a direct consequence of (a), (b), Lemma 2.2, and Lemma 2.3.

To prove (d), note first that, by (b), the sequence \((\varphi_n(x)) \) is norm bounded. Write \(x = \| \cdot \|_2^{-\lim_{n \to \infty} x_n}, \) where \(x_n \in \mathcal{M}_n. \) Then \(\| x - \varphi_n(x) \|_2 \leq 2 \| x - x_n \|_2. \) Thus \(x = \| \cdot \|_2^{-\lim_{n \to \infty} \varphi_n(x)}. \) It follows from Lemma 2.3 that \(x = \text{s-lim}_n \varphi_n(x), \ x \in \mathcal{M}. \) This proves (d).

The next lemma is a key fact.

Lemma 2.7. Let \(n \geq 1, \) and suppose that \(d \in \mathcal{D}^{(n)}. \) If \(i > j \) and \(e_{ij}^{(n)} d \in \mathcal{T}, \) then \(e_{ij}^{(n)} d = 0. \)

Proof. Observe that \(e_{ij}^{(n)} d^* = (e_{ij}^{(n)} d) d^* \in \mathcal{T}. \) Write \(e_{ij}^{(n)} d^* = \text{w-lim}_n x_{ij}, \) where \((x_{ij}) \) is some net in \(\mathcal{S}. \) Then, we have \(\text{w-lim}_n (e_{ij}^{(n)} d^* - x_a) = 0. \)

Define \(a = e_{ij}^{(n)}, \) and let \(\xi_1, \xi_a \) be the vectors in \(\mathcal{M} \) corresponding, respectively, to the elements 1 and \(a. \) We then have \(\lim_{n} \langle (add^* - x_a)\xi_1, \xi_a \rangle = 0. \)

Now, for all \(\alpha, \) we have \(\tau(e_{ij}^{(n)} x_a) = 0; \) therefore, \(\langle (add^* - x_a)\xi_1, \xi_a \rangle = \| e_{ij}^{(n)} d \|^2. \) It follows that \(\| e_{ij}^{(n)} d \|^2 = 0, \) i.e., \(e_{ij}^{(n)} d = 0. \)

We have now developed enough machinery to prove the main results of this section:

Theorem 2.8. \(\mathcal{T} \) is a triangular algebra in \(\mathcal{M} \) with diagonal \(\mathcal{T} \cap \mathcal{T}^* = \mathcal{D}. \)

Proof. We first show that \(\mathcal{D} \) is a maximal abelian von Neumann subalgebra of \(\mathcal{M}. \) To prove this, let \(\mathcal{F} \) be an abelian von Neumann subalgebra of \(\mathcal{M} \) such that \(\mathcal{D} \subseteq \mathcal{F}. \) Let \(n \geq 1, \) and let \(x \in \mathcal{F} \) be arbitrary. By Theorem 2.6, we have \(\varphi_n(x) = \text{s-lim}_n \varphi_{nk}(x). \) Therefore, \(\phi_n(x) \in \mathcal{F}. \) Therefore, if \(y \in \mathcal{F}, \) then \(\varphi_n(x) \) and \(y \) commute. In particular, \(e_{ij}^{(n)} \varphi_n(x) = \varphi_n(x)e_{ij}^{(n)}, \) for \(1 \leq i, j \leq p_n. \) By Theorem 2.6, we have

\[
(\ast\ast) \quad \varphi_n(x) = \sum_{i,j=1}^{p_n} e_{ij}^{(n)} d_{ij}, \quad d_{ij} \in \mathcal{D}^{(n)}.
\]

Therefore, if \(i \neq j, \) then \(e_{ij}^{(n)} d_{ij} = 0. \) Thus \(\varphi_n(x) \in \mathcal{D}. \) By Theorem 2.6, we have \(x = \text{s-lim}_n \varphi_n(x), \) consequently, \(x \in \mathcal{D}. \) This proves that \(\mathcal{D} = \mathcal{F}, \) so \(\mathcal{D} \) is a maximal abelian von Neumann subalgebra of \(\mathcal{M}. \)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
To show that \mathcal{I} has diagonal \mathcal{D}, let $x \in \mathcal{I} \cap \mathcal{I}^*$, and let $n \geq 1$. Express $\varphi_n(x)$ as in (**). We have $\varphi_n(x) \in \mathcal{I} \cap \mathcal{I}^*$; therefore, $e_{ij}^{(n)} d_{ij} = e_{ii}^{(n)} \varphi_n(x) e_{jj}^{(n)} \in \mathcal{I} \cap \mathcal{I}^*$. Thus, Lemma 2.7 implies that $e_{ij}^{(n)} d_{ij} = 0$ for $i \neq j$. Hence, for all n, $\varphi_n(x) \in \mathcal{D}$. By Lemma 2.6, $x = s\text{-}\lim_n \varphi_n(x)$, and hence, $x \in \mathcal{D}$. This proves that \mathcal{I} has diagonal \mathcal{D}.

Theorem 2.9. \mathcal{I} is a maximal weakly closed triangular algebra in \mathscr{M}.

Proof. Let \mathcal{R} be a weakly closed triangular algebra in \mathscr{M} such that $\mathcal{I} \subseteq \mathcal{R}$. Then $\mathcal{D} = \mathcal{R} \cap \mathcal{R}^*$. Let $n \geq 1$, and let $x \in \mathcal{R}$. Write $\varphi_n(x)$ as in (**). By (c) of Theorem 2.5, we have $\varphi_n(x) = s\text{-}\lim_{k \geq n} \varphi_{nk}(x)$; hence, because $\varphi_{nk}(x) \in \mathcal{R}$, we have $\varphi_n(x) \in \mathcal{R}$. Let $1 \leq j < i \leq p_n$. Then $e_{ij}^{(n)} d_{ij} = e_{ii}^{(n)} \varphi_n(x) e_{jj}^{(n)} \in \mathcal{R}$. Define $y = e_{ij}^{(n)} d_{ij}$. Then we have $y^* = e_{ji}^{(n)} d_{ij}^* \in \mathcal{I}$; therefore, $y + y^* \in \mathcal{R}$. But then $y + y^* \in \mathcal{R} \cap \mathcal{R}^* = \mathcal{D}$. It follows from Lemma 2.7 that $e_{ij}^{(n)} d_{ij} = 0$. Hence, for all n, $\varphi_n(x) \in \mathcal{I}$. Because $x = s\text{-}\lim_n \varphi_n(x)$, we conclude that $x \in \mathcal{I}$. Hence $\mathcal{R} = \mathcal{I}$. \square

3. \mathcal{I} is irreducible relative to \mathscr{M}

In this section we prove the second part of Theorem I, namely that \mathcal{I} is irreducible relative to \mathscr{M}. This proof of this is essentially by reductio ad absurdum.

Lemma 3.1. Let (x_n) be a sequence in \mathcal{I} such that $\sup_n \|x_n\| < \infty$. Let $q \in \mathcal{M} \cap (\text{lat}\mathcal{I})$, and suppose that (q_n) is a sequence of projections in \mathcal{M} such that $q = \| \cdot \|_2\text{-}\lim_n q_n$. Then $\lim_n \|q_n x_n q_n\|_2 = 0$.

Proof. Verify that for all n, $\|q_n x_n q_n\|_2 \leq 3M\|q - q_n\|_2$, where $M = \sup_n \|x_n\|$. \square

Straightforward considerations suffice to prove the following lemma; hence we will omit its proof.

Lemma 3.2. Let $q \in \mathcal{D}$ be a projection. Then there exists a sequence (q_n) of projections in \mathcal{M} such that $q_n \in \mathcal{D}$ and $q = \| \cdot \|_2\text{-}\lim_n q_n$.

We are now in a position to prove that \mathcal{I} is irreducible relative to \mathcal{M}.

Theorem 3.3. The algebra \mathcal{I} is irreducible relative to \mathcal{M}.

Proof. Let $q \in \mathcal{M} \cap (\text{lat}\mathcal{I})$. By Lemma 3.2, there exists a sequence (q_n) of projections in \mathcal{D} such that $q = \| \cdot \|_2\text{-}\lim_n q_n$ and $q_n = \sum_{i=1}^{n} q_i^{(n)} e_{ii}^{(n)}$, with $q_i^{(n)} \in \{0, 1\}$. Let (N_n) and (L_n) be sequences of positive integers defined as follows:

$$N_n = |\{i : 1 \leq i \leq p_n \text{ and } q_i^{(n)} = 0\}|,$$

$$L_n = p_n - N_n.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then exactly one of the following conditions holds:

(a) \(\liminf_n \frac{N_n}{p_n} = 0 \).
(b) \(\liminf_n \frac{N_n}{p_n} > 0 \).

If (a) holds, then we are done, for then \(\|1 - q\|_2^2 = \lim_n \frac{N_n}{p_n} = 0 \), i.e., \(q = 1 \). Therefore we may assume that (b) holds. We claim that \(q = 0 \). To prove this, assume that \(q \neq 0 \). Then the sequence \((\frac{N_n}{p_n}) \) is a bounded sequence. Therefore, by (b), there exists an \(\alpha > 0 \) such that some subsequence of \((\frac{N_n}{p_n}) \) converges to \(\alpha \). Without loss of generality, we may assume that \(\lim_n \frac{N_n}{p_n} = \alpha \). We then have \(\lim_n \frac{L_n}{p_n} = 1 - \alpha \). We cannot have \(\alpha = 1 \); thus, \(0 < \alpha < 1 \). Now, there exists a sequence \((X_n) \) of matrices such that for all \(n \), \(X_n \in M_{p_n} \), \(\|X_n\| = 1 \) and

\[
\|X_n\|_2 = \begin{cases} \frac{N_n}{p_n}, & \text{if } N_n \leq L_n; \\ \frac{L_n}{p_n}, & \text{otherwise}. \end{cases}
\]

(d) \(q_n x_n q_n \).

Here \(Q_n = \text{diag}(q_1^{(n)}, \ldots, q_{p_n}^{(n)}) \). Note that the matrix of \(q_n \) with respect to the \(e_{ij}^{(n)} \) is \(Q_n \). Now let \(R_n \in M_{p_n} \) be the matrix defined by \(R_n = W_n \odot X_n \).

Here, \(W_n \) is the \(r_{n+1,n} \times r_{n+1,n} \) matrix having 1’s on the superdiagonal, while all other entries are 0, and \(r_{n+1,n} = p_{n+1}/p_n \). It is clear that \(\|R_n\| = 1 \). Define \(x_n \in \mathcal{M} \) to be the element of \(\mathcal{M} \) whose matrix with respect to the \(e_{ij}^{(n+1)} \) is \(R_n \). Let \(r = r_{n+1,n} \); then, by (d), the matrix of \(q_n x_n q_n \) with respect to the \(e_{ij}^{(n+1)} \) is given by \((1, \odot Q_n^{\frac{1}{2}}) R_n (1, \odot Q_n^{\frac{1}{2}}) = R_n \). Hence we have \(q_n x_n q_n = x_n \).

It follows that \(\|q_n x_n q_n\|_2 = \|x_n\|_2 = \|R_n\|_2 \). A simple calculation shows that \(\|R_n\|_2^2 = (1 - 1/r_{n+1,n}) \|X_n\|_2^2 \). Because \(p_n < p_{n+1} \), we have \(r_{n+1,n} \geq 2 \), and hence \((1 - 1/r_{n+1,n}) \geq 1/2 \). Consequently for all \(n \), \(\|q_n x_n q_n\|_2^2 = \|R_n\|_2^2 \geq (1/2) \cdot \|X_n\|_2^2 \). Therefore

\[
\liminf_n \|q_n x_n q_n\|_2 \geq (1/\sqrt{2}) \cdot \liminf_n \|X_n\|_2.
\]

Now, \(\lim_n N_n/p_n = \alpha > 0 \) and \(\lim_n L_n/p_n = 1 - \alpha > 0 \). Therefore condition (c) implies that \(\liminf_n \|X_n\|_2 > 0 \). Hence (e) implies that

\[
\liminf_n \|q_n x_n q_n\|_2 > 0.
\]

Because the matrix \(R_n \) is upper triangular, we see that for all \(n \), \(x_n \in \mathcal{T} \).

Because \(\|x_n\| = \|X_n\| = 1 \), it follows from Lemma 4.1 that \(\lim_n \|q_n x_n q_n\|_2 = 0 \). But this contradicts (e); hence we conclude that \(q = 0 \). This completes the proof of the theorem. \(\Box \)
4. Reflexivity of \mathcal{F}

In this final section we prove the last part of Theorem I, namely that \mathcal{F} is a reflexive subalgebra of $B(\mathcal{H}_\infty)$. We conclude the section with a proof of Theorem II.

Theorem 4.1 ([L, 4.22]). Every weakly closed subalgebra of a finite von Neumann algebra containing m.a.s.a. is reflexive.

Theorem 4.2. The algebra \mathcal{F} is reflexive.

Proof. Immediate by Theorems 2.8 and 4.1.

Theorem 4.2. Let $n \geq 1$, and suppose that $d \in \mathcal{D}^{(n)}$. If $i > j$ and $e_{ij}^{(n)} d \in \mathcal{R}$, then $e_{ij}^{(n)} d = 0$, where $\mathcal{R} = \bigcup_{n=1}^\infty \mathcal{F}^{\parallel z \parallel^2}$. It follows that $\mathcal{R} \subseteq \mathcal{F}$.

Proof. Observe that $\langle (\langle \alpha d^* - x \rangle \xi_1, \xi_a) \rangle^2 \leq \parallel e_{ii}^{(n)} \parallel_2^2 \cdot \parallel e_{ii}^{(n)} d d^* - x \parallel_2^2$, for all $i > j, d, x \in \mathcal{A}$, and $a = e_{ij}^{(n)}$. Use this inequality to proceed as in the proof of Theorem 2.7. Now use Theorem 2.6(b) to check that $\mathcal{R} \subseteq \mathcal{F}$. □

Theorem 4.3. $\mathcal{F} = \text{alg}\mathcal{L}$.

Proof. First, observe that 2.1, 2.6, and 2.7 imply that $\mathcal{L} \subseteq \text{lat}\mathcal{F}$. Hence, to complete the proof, it suffices to show that $\text{alg}\mathcal{L} \subseteq \mathcal{F}$. Let $x \in \text{alg}\mathcal{L}$. Then $x \in \text{alg}\text{lat}\mathcal{M} = \mathcal{M}$. We claim that for all $y \in \mathcal{F}$, $xy \in \mathcal{F}$; hence, with $y = 1$, we get $x \in \mathcal{F}$. To prove the claim, write $x = \parallel \cdot \parallel_2\text{-lim}_n x_n$, where $x_n \in \mathcal{M}$ and $\sup_n \parallel x_n \parallel < \infty$. Let $y \in \mathcal{F}$. Then $x \xi_y \in M_{\mathcal{F}}$; therefore, there exists a sequence (γ_n) in \mathcal{F} such that $x \xi_y = \parallel \cdot \parallel_2\text{-lim}_n \xi_{\gamma_n}$. We then have $\parallel x_n \xi_y - \xi_{\gamma_n} \parallel \leq \parallel x_n \xi_y - x \xi_y \parallel + \parallel x \xi_y - \xi_y \parallel$. Because $x = \text{s-lim}_n x_n$, it follows that $\parallel x_n y - y \parallel_2^2 = \parallel \xi_{(x_n y - y)} \parallel^2 = \parallel x_n \xi_y - \xi_y \parallel^2 \rightarrow 0$. Hence we have $\lim_n \parallel xy - y \parallel_2 = 0$. Therefore, $xy = \parallel \cdot \parallel_2\text{-lim}_n y_n$. Theorem 4.2 then gives $xy \in \mathcal{R}$, i.e., $xy \in \mathcal{F}$. □

Acknowledgments

The author wants to thank David Larson for a number of useful conversations on the subject matter of this paper.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720