A characterization of submetacompactness in terms of products
HTML articles powered by AMS MathViewer
- by Yukinobu Yajima
- Proc. Amer. Math. Soc. 112 (1991), 291-296
- DOI: https://doi.org/10.1090/S0002-9939-1991-1054165-6
- PDF | Request permission
Abstract:
A space $X$ is said to be suborthocompact if for every open cover $\mathcal {U}$ of $X$ there is a sequence $\{ {\mathcal {V}_n}\}$ of open refinements of $\mathcal {U}$ such that for each $x \in X$ there is some $n \in \omega$ such that $\cap \{ V \in {\mathcal {V}_n}:x \in V\}$ is a neighborhood of $x$ in $X$. It is proved that a Tychonoff space $X$ is submetacompact if and only if the product $X \times \beta X$ is suborthocompact.References
- Dennis K. Burke, Orthocompactness and perfect mappings, Proc. Amer. Math. Soc. 79 (1980), no. 3, 484–486. MR 567998, DOI 10.1090/S0002-9939-1980-0567998-X
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- Gary Gruenhage and Yukinobu Yajima, A filter property of submetacompactness and its application to products, Topology Appl. 36 (1990), no. 1, 43–55. MR 1062184, DOI 10.1016/0166-8641(90)90035-Z
- Fumie Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686–687. MR 74806
- Shou Li Jiang, On an Junnila problem, Questions Answers Gen. Topology 6 (1988), no. 1, 43–47. MR 940440
- Heikki J. K. Junnila, Metacompactness, paracompactness, and interior-preserving open covers, Trans. Amer. Math. Soc. 249 (1979), no. 2, 373–385. MR 525679, DOI 10.1090/S0002-9947-1979-0525679-9
- Heikki J. K. Junnila, On submetacompactness, Topology Proc. 3 (1978), no. 2, 375–405 (1979). MR 540503
- Yûkiti Katuta, Expandability and its generalizations, Fund. Math. 87 (1975), no. 3, 231–250. MR 377817, DOI 10.4064/fm-87-3-231-250
- K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223–236. MR 132525, DOI 10.4064/fm-50-3-223-236
- Kiiti Morita, Note on paracompactness, Proc. Japan Acad. 37 (1961), 1–3. MR 140078
- Brian M. Scott, Toward a product theory for orthocompactness, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 517–537. MR 0372820
- Hisahiro Tamano, On paracompactness, Pacific J. Math. 10 (1960), 1043–1047. MR 124876
- Hisahiro Tamano, On compactifications, J. Math. Kyoto Univ. 1 (1961/62), 161–193. MR 142096, DOI 10.1215/kjm/1250525055
- J. M. Worrell Jr., A characterization of metacompact spaces, Portugal. Math. 25 (1966), 171–174. MR 232350
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 291-296
- MSC: Primary 54D20; Secondary 54B10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1054165-6
- MathSciNet review: 1054165