UNIFORM L^2-WEIGHTED SOBOLEV INEQUALITIES

FILIPPO CHIARENZA AND ALBERTO RUIZ

(Communicated by Barbara L. Keyfitz)

Abstract. We prove the inequality (1) for weights w in a class which contains
the class J_p, $p > (n - 1)/2$, introduced by C. Fefferman and D. H. Phong in
studying eigenvalues of Schrödinger operators. In our case, C is independent
of the lower order terms of P. As a consequence we prove unique continuation
theorem for solutions of $\Delta + V$, V in the same class.

INTRODUCTION

We give conditions on weight functions w so that an inequality

(1) $\|u\|_{L^2(w)} \leq C\|P(D)u\|_{L^2(w^{-1})}$

holds for the constant coefficient operator in \mathbb{R}^n

$P(D) = \Delta + \sum a_i \partial / \partial x_i + b$,

where $n \geq 3$ and the constant C is independent of the lower order terms a_i, b in C.

The weight w must satisfy two conditions. The first is a one-dimensional
A$_2$ Muckenhoupt's requirement, defined at the beginning of §1, which depends
only on the direction of the vector a_j. The second is an estimate,

$$\left(\frac{1}{|B_r|} \int_{B_r} w^\alpha(x) \, dx \right) \left(\frac{1}{|B_r|} \int_{B_r} w^{-\alpha}(x) \, dx \right)^{-1} \leq C r^{-4\alpha},$$

where B_r denotes a ball of radius r and C is independent of B_r.

A similar, weaker condition for the particular case of the Laplace operator
was given in [CW] (see for instance (1, 6) in this reference).

Also, an inequality like (1) has been proved in [KRS] for L^p norms; more
precisely

(0) $\|u\|_{L^p} \leq C\|P(D)u\|_{L^p}$,

Received by the editors April 14, 1988 and, in revised form, June 4, 1990.
The first author was partially supported by the Italian Ministero della Pubblica Istruzione and
GNAFA-Consiglio Nazionale della Ricerca.
The second author was partially supported by GNAFA and the Spanish Comisión Asesora de
Investigaciones y Ciencia.

©1991 American Mathematical Society
0002-9939/91 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where p and p' satisfy the duality condition and the Sobolev gap $1/p - 1/p' = 2/n$.

The ingredients to prove (1), as in [KRS], are a similar uniform inequality
\begin{equation}
\|u\|_{L^2(w)} \leq C(\|\Delta + z\|u\|_{L^2(w^{-1})}),
\end{equation}
and a weighted restriction theorem for the Fourier transform which we state independently, since it requires a weaker hypothesis.

As a consequence of (1), we prove a version of a result due to Chanillo and Sawyer [CS] on unique continuation of solutions of Schrödinger equations. More precisely, we prove that a solution u of the inequality
\[|\Delta u(x)| \leq |V(x)u(x)|, \]
which is zero in an open set, must vanish everywhere. We assume some minimal conditions on u, and assume V to be in the Fefferman-Phong class
\[J^\text{loc}_{p,F} = \left\{ V \in L^p_{\text{loc}}, \text{ such that } \limsup_{r \to 0} \sup_{x \in K} r^{-n} \int_{B_r(x)} V^p \leq F, \right\}, \]
for $p > (n-1)/2$ and F some constant depending only on dimension.

Chanillo and Sawyer (see [K]) obtained a stronger unique continuation for V in the Fefferman-Phong class for $F = 0$ and the same p’s; their proof relies on an $L^2 \to L^2$ estimate due to Jerison and Kenig very difficult to prove. We take from them the idea of substituting weighted L^2 inequalities for L^p inequalities and also the use of maximal functions in the unique continuation context.

Our proof of (1), and hence a new proof of unique continuation property for potential in the class $J^\text{loc}_{p,F}$, relies on restriction theorems for the Fourier transform, stationary phase methods, and real interpolation.

1. Statement of results and consequences

We start with some definitions.

Let w be a nonnegative function. We say that w is in D_β, $\beta < 0$, if there exists a constant $C > 0$ such that for any ball B_t of radius t,
\[\left(t^{-n} \int_{B_t} w(x) \, dx \right) \left(t^{-n} \int_{B_t} w(x)^{-1} \right)^{-1} \leq Ct^\beta, \]
we denote by $|||w|||^2$ the infimum of such constants C.

Let y in R^n, and let us write for any y in R^n, $y = ty + y'$, where y' is in some hyperplane Π of R^n. We will say that w is in $A_p(y)$ if the function
\[w_{y'} : R \to R^+, \text{ defined by } w_{y'}(t) = w(y') \text{ is an } A_p \text{ weight in } R \text{ for almost every } y' \in \Pi, \text{ with } A_p \text{ norm uniformly bounded.} \]
Theorem 1. Let \(P(D) = \Delta + \sum a_j \partial / \partial x_j + b, a_j, b \in \mathbb{C} \). Then there exists a direction \(\gamma \) in \(\mathbb{R}^n \), depending only on the direction of the vector \((\text{Re} a_j)\), such that if \(w \) is in \(A_2(\gamma) \) and \(w^\alpha \) is in \(D_\beta \) for some \(\alpha > (n-1)/2 \), \(\beta = -4\alpha \), the following inequality (1)

\[
\|u\|_{L^2(v)} \leq C \|\|w^\alpha\|^{1/\alpha}\|P(D)u\|_{L^2(v^{-1})}^{1/\alpha}
\]

holds with an absolute constant \(C \) depending only on the \(A_2(\gamma) \) constant of \(w \).

The proof of the above theorem is based on the following

Theorem 2 (Weighted restriction theorem for the Fourier transform). Let \(d\sigma \) be the uniform measure on the sphere \(S^{n-1} \) in \(\mathbb{R}^n \) and \((d\sigma)^{-1} \) its Fourier transform; let \(w \) be a doubling weight \(w > 0 \), i.e. there exists a constant \(C' \) such that

\[
\int_{B_r} w \leq C' \int_{B_r} w.
\]

Then for \(w^\alpha \in D_\beta \) for \(1 < \alpha < (1-n-\beta)/2 \) and \(n \geq 3 \), there exists a constant \(C \) independent of \(\|\|\|u\|\| \) such that

\[
\|d\sigma)^{-1} * f\|_{L^2(v)} \leq C \|\|w^\alpha\|^{1/\alpha}\|f\|_{L^2(v)}
\]

for every \(f \in C_0^\infty \).

Theorem 3 (Weighted \(L^2 \) restriction theorem for the resolvent). Let \(w \) be as in Theorem 2, then there exists a constant \(C \) such that

\[
\|u\|_{L^2(v)} \leq C \|\|w^\alpha\|^{1/\alpha}\|z|^{-1-(\beta/4\alpha)}\|(-\Delta + z)u\|_{L^2(v^{-1})}^{1/\alpha}
\]

for any \(u \in C_0^\infty \) and \(z \) in \(\mathbb{C} \).

The following method gives weights which satisfy the hypothesis of Theorem 1, with \(A_2(\gamma) \) constant depending only on the dimension.

Take \(\gamma_1, \gamma_2, \ldots, \gamma_n \), an orthogonal basis of \(\mathbb{R}^n \) and define the strong maximal function

\[
Mf(x) = \sup_R |R|^{-1} \int_R |f(y)| dy,
\]

where the sup is taken over all the rectangles with edges in the directions \(\gamma_1 = \gamma, \gamma_2, \ldots, \gamma_n \), which contain \(x \).

Let us define \(M_\alpha f = (M(f^\alpha))^{1/\alpha} \). Then we have the following lemma due to Chanillo and Sawyer:

Lemma 1. Let \(f \) be in \(J_{p,F} \) for \(p > (n-1)/2 \), and \(1 < \alpha < p \); then there exists a constant \(C_\alpha \), depending only on the dimension and \(\alpha \), such that \(M_\alpha f \) is in \(J_{p,F'} \), for \(F' = C_\alpha F \).

Now we are in position to construct the appropriate weights. Following [R], let us take

\[
Sf = \sum_{j=0}^\infty (2C_\alpha)^{-j} \|M_\alpha f\|.
\]
Then if $V \in J^{\text{loc}}_{p,F}$, define
\begin{equation}
(4) \quad w(x) = S(V \chi_{B_R}).
\end{equation}

The following properties hold:
(a) $M_{\alpha} w(x) \leq C w(x)$ for some $C \geq 0$; this is a $A^*_{\alpha}(\gamma_1, \gamma_2, \ldots, \gamma_n)$ condition for w^α, hence w satisfies the same property.
(b) w is in $J_{p,F}$, if $\alpha < p$, $p > (n - 1)/2$;
(c) w^α is in D_β for $\beta = -4\alpha$ and $|||w^\alpha|||^{1/\alpha} \leq C_{\alpha,F}$;
(d) w is in $A_2(\gamma)$.

Conditions (a) and (b) are consequences of the results in [GR, page 433] and Lemma 1.
Condition (c) is a consequence of Jensen’s inequality.
Condition (d) follows from Theorem 6.2 in [GR].

As a consequence of Theorem 1, we prove the following unique continuation property:

Corollary. There exists $F \geq 0$, depending only on the dimension, such that for any solution of the differential inequality
\begin{equation}
(5) \quad |\Delta u(x)| \leq V(x)|u(x)|,
\end{equation}
where V is in $J^{\text{loc}}_{p,F}$ for some $p > (n - 1)/2$ and u is in $H^{1,2}_{\text{loc}}$, if u is zero in an open set, u must be zero everywhere.

$H^{1,2}_{\text{loc}}$ denotes the Sobolev space of functions in L^2_{loc} with derivatives in L^2_{loc}.

Proof of the corollary. When w satisfies the hypothesis of Theorem 1, the following Carleman inequality holds, with constant C independent of $v \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$:
\begin{equation}
(6) \quad \|e^{\lambda v \cdot x} u\|_{L^2(w)} \leq C \|w^\alpha\|^{1/\alpha} \|e^{\lambda v \cdot x} \Delta u\|_{L^2(\mathbb{R}^n)}.
\end{equation}

In fact (6) can be reduced, by changing $v = e^{\lambda v \cdot x} u$ to
\begin{equation}
(6') \quad \|v\|_{L^2(w)} \leq C \|w^\alpha\|^{1/\alpha} \|P(D)v\|_{L^2(\mathbb{R}^n)},
\end{equation}
where $P(D) = \sum |D_j + i\lambda v_j|^2$, $v = (v_j)_{j=1,\ldots,n}$, which is a particular case of (1).

By a reflection argument (see [KRS]) we may assume that $u = 0$ out of a compact set, and hence (by translation and dilation) to the case $u = 0$ out of $B_1 = \{x \in \mathbb{R}^n, \ x_1^2 + \cdots + x_{n-1}^2 + (x_n + 1)^2 \leq 1\}$; it suffices to prove that $u = 0$ in a neighborhood of the origin.

The above transformations preserve the spaces J_p. Also, by adding to V the function $e|x|^{-2}$, we obtain a new potential in (5), which is in $J^{\text{loc}}_{p,F+\varepsilon}$ and is bounded below in compact sets.
We still call V the resulting potential of applying rotations, inversions, and the above perturbation to V in (5).

Take now w as (4) after Lemma 1, with γ given by Theorem 1 when $a_j = 2\nu_j$. From Conditions (a)–(d), w satisfies the hypothesis of this theorem.

Let us choose $\eta \in C^\infty_0(B_{B\delta})$, $\eta = 1$ in $|x| \leq \delta/2$, $\delta > 0$ to be fixed, then (6) with $\nu = (0, \ldots, 0, 1)$ gives for δ small

$$||e^{\lambda x_n} g||_{L^2(w)} \leq 2CF ||e^{\lambda x_n} \Delta g||_{L^2(w^{-1})},$$

where $g = u\eta$,

$$\leq 2CF ||e^{\lambda x_n} uV||_{L^2(w^{-1}dx, B_{B\delta/2})} + C' ||e^{\lambda x_n} g||_{L^2(w^{-1}dx, B_{B\delta/2})}$$

but

$$||e^{\lambda x_n} uV||_{L^2(w^{-1}dx, B_{B\delta/2})} = \left(\int_{B_{B\delta/2}} |e^{\lambda x_n} u(x)|^2 V^2(x) w^{-1}(x) \, dx \right)^{1/2}$$

$$\leq \left(\int_{B_{B\delta/2}} |e^{\lambda x_n} u(x)|^2 w(x) \, dx \right)^{1/2}$$

since $V(x) \leq S(V_{x_B}) = w(x)$ for δ small enough.

Assuming $2CF \leq 1/4$, we obtain

$$||e^{\lambda x_n} g||_{L^2(wdx, B_{B\delta/2})} \leq 2C' ||e^{\lambda x_n} \Delta g||_{L^2(w^{-1}dx, B_{B\delta/2})}$$

uniformly in λ; then there exists $\zeta > 0$ such that $g = 0$ on $x_n > -\zeta$, if we prove that the right-hand side is finite.

$$||\Delta g||_{L^2(w^{-1}dx, B_{B\delta/2})}$$

$$\leq ||(\Delta \eta) u||_{L^2(w^{-1}dx, B_{B\delta})} + ||\nabla \eta \cdot \nabla u||_{L^2(w^{-1}, B_{B\delta})} + ||\eta \Delta u||_{L^2(w^{-1}, B_{B\delta})}$$

$$\leq C ||u||_{L^2(dx, B_{B\delta})} + C ||\nabla u||_{L^2(dx, B_{B\delta})} + C ||V u||_{L^2(w^{-1}dx, B_{B\delta})}$$

since w^{-1} is bounded in $B_{B\delta}$, and u is in $H^{1,2}_{loc}$. To bound the last term consider that

$$\int |V u|^2 w^{-1} \, dx \leq \int |u|^2 V \, dx \leq C \int |\nabla u|^2 \, dx,$$

since V is in the Fefferman-Phong class with $p \geq 1$, and Sobolev estimates hold [FP].

3. The proofs

Proof of Theorem 1. As in [KRS], by rotation, density, and replacing u by ue^{-ixc} for some c in R^n, we may reduce to the case

$$P(D) = \Delta + \sigma + \tau(\partial/\partial x_n + ie).$$

We have to prove (1) with C independent of σ, τ, e in $R\{0\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Take
\[m(\xi) = (-|\xi|^2 + \sigma + i\tau(\xi_n + \epsilon))^{-1}; \]
we have to prove
\[|(m(\xi)\hat{f}(\xi))\widehat{\nabla}||_{L^2(w)} \leq C||w^\alpha||^{1/\alpha}||f||_{L^2(w^{-1})}. \]

By inserting a cutoff function \(\chi \) such that \(\chi(t) = 1 \) on \(1 < |t| < 2 \), we may write
\[
(m(\xi)\hat{f}(\xi))\widehat{\nabla}(x) = \left(\sum_k m_k(\xi)\hat{f}(\xi) \right)\widehat{\nabla}(x),
\]
where \(m_k(\xi) = \chi_k(\xi)m(\xi) \) and \(\chi_k(\xi) = \chi(2^k(\xi_n + \epsilon)) \). Then (7) is bounded by
\[
\left| \sum_k \int |\{m_k\hat{f}\widehat{\nabla}(x)|^2w(x)\,dx \right|^{1/2} \leq C||w^\alpha||^{1/\alpha} \left(\sum_k \int |\{\chi_k(\cdot)\hat{f}(\cdot)\widehat{\nabla}(x)|^2w^{-1}(x) \right)^{1/2}
\]
and then, by the above argument, bounded by
\[C||w^\alpha||^{1/\alpha}||f||_{L^2(w^{-1})}. \]

Only (8) remains to be proved; it may be reduced to the boundedness of the Fourier multiplier
\[m_k^*(\xi) = \chi_k(\xi)(-|\xi|^2 + \sigma + i\tau 2^{-k})^{-1}, \]
which is bounded by Theorem 3 with \(z = \sigma + i\tau 2^{-k} \).

Hence only the difference \(m_k - m_k^* \) has to be bounded as a Fourier multiplier; it is given by
\[
(Tf)\widehat{\nabla}(\xi) = \chi_k(\xi_n)f\widehat{\nabla}(\xi)i\tau(\xi_n + \epsilon - 2^{-k})
\times (-|\xi|^2 + \sigma + i\tau(\xi_n + \epsilon))^{-1}(-|\xi|^2 + \sigma + i\tau 2^{-k})^{-1}.
\]

Take polar coordinates \(\xi = \rho \xi' \), by Minkowski’s inequality
\[
\int_0^\infty \left\| \int_{S^{n-1}} (Tf)(\rho \xi')e^{ip\xi'\cdot x} \,d\sigma(\xi') \right\|_{L^2(w(x)) \,dx} \rho^n \,d\rho = \int_0^\infty \|(d\sigma)\cdot\xi(m_{\rho}(\xi_n)\hat{f}(\rho \xi))\widehat{\nabla}(\rho x)\|_{L^2(w)\rho \,d\rho} \rho^{n-1} \,d\rho,
\]
where
\[
m_{\rho}(\xi_n) = \chi_k(\rho \xi_n)i\tau(\rho \xi_n + \epsilon - 2^{-k})
\times (-|\rho|^2 + \sigma + i\tau(\rho \xi_n + \epsilon))^{-1}(-|\rho|^2 + \sigma + i\tau 2^{-k})^{-1} = \int_0^\infty \|(d\sigma)\cdot\xi(m_{\rho}(\xi_n)\hat{f}(\rho \xi))\widehat{\nabla}(y)\|_{L^2(w(y/\rho)) \,dy} \rho^{n/2-1} \,d\rho \leq \int_0^\infty \|(m_{\rho}(\xi_n)\hat{f}(\rho \xi))\widehat{\nabla}(y)\|_{L^2(w(y/\rho)^{-1}) \,dy} \rho^{n/2-1-\beta/2\alpha} \,d\rho ||w^\alpha||^{1/\alpha},
\]
by Theorem 2, and
\[
|||w^\alpha(x/\rho)|||^2 = \rho^{-\beta}|||w^\alpha(x)|||^2,
\]
\[
= \int_0^\infty \{\rho^{-\alpha} m_\rho(\rho^{-1} \xi_n) \hat{f}(\xi)\} \hat{(y/\rho)}|||L^2(w(y/\rho)^{-1})dy\rho^{n/2-1-\beta/2\alpha}|||w^\alpha|||^{1/\alpha}.
\]
But since
\[
m_\rho(\rho^{-1} \xi_n) = \chi_k(\xi_n) i\tau(\xi_n + \epsilon - 2^{-k})| - \rho^2 + \sigma + i\tau(\xi_n + \epsilon)|^{-1} - \rho^2 + \sigma + i\tau 2^{-k}||^2
\]
is an \(L^2(w^{-1}) \rightarrow L^2(w^{-1})\) operator with norm
\[
C \frac{\tau 2^{-k}}{(\rho^2 - \sigma)^2 + (\tau 2^{-k})^2},
\]
where \(C\) depends only on the \(A_2(\gamma)\) constant of \(w^{-1}\), we have
\[
\|Tf\|_{L^2(w)} \leq C |||w^\alpha|||^1 \int_0^\infty \frac{\rho^{-1-\beta/2\alpha} \tau 2^{-k}}{(\rho^2 - \sigma)^2 + (\tau 2^{-k})^2} \|f\|_{L^2(w^{-1})} \rho^{n/2-1-\beta/2\alpha} \|w^\alpha\|^{1/\alpha},
\]
with \(\lambda = \tau 2^{-k}/\sigma\); if we take \(-\beta/4\alpha - 1 = 0\), the integral is uniformly bounded with respect to \(\lambda\) and the theorem is proved.

\textbf{Proof of Theorem 2.} It is known that
\[
(d\sigma)^\wedge = |x|^{-(n/2)+1} J_{(n/2)-1}(|x|), \quad \text{where } J_t \text{ denotes the Bessel function of order } t.
\]
If \(|x| \geq 1\), \(J_{(n/2)-1}(|x|)\) is asymptotically like \(e^{i|x|} |x|^{1/2}\).

Let us take a cutoff function \(\psi(|x|)\) such that \(\text{supp } \psi\) is contained in \([1, 2]\) and
\[
\sum_{k=1}^\infty \psi(2^{-k}s) = 1 \quad \text{for } |s| > 1;
\]
write \(d\sigma = \sum_{k=0}^\infty F_k(x) = \sum_{k=0}^\infty \psi_k(x) d\sigma(x)\), where \(F_k(x) = \psi(2^{-k} |x|)\).

Take \(T_k\) the operator of convolution with \(F_k\). We are going to estimate its \(L^2(w^{-\theta}) \rightarrow L^2(w^{\theta})\) mapping norm:

For \(\theta = 0\) we use P. Tomas’s estimate (see [T]),
\[
\|T_k f\|_2 \leq C 2^k \|f\|_2.
\]

For \(\theta = \alpha > 1\),
\[
|F_k(x)| \leq C |\psi(2^{-k} |x|)| e^{i|x|} |x|^{-(n-1)/2} \leq C 2^{-k(n-1)/2} \chi_{\{|x| < 2^{k+1} \}}(|x|).
\]
Hence
\[|(T_k f)(x)| \leq C 2^{-k(n-1)/2} \int_{|x-y| \leq 2^k} |f(y)| \, dy \]
\[\leq 2^{-k(n-1)/2} M^{2k}(f(x)) 2^{nk} , \]
where \(M_t f(x) = \sup_{|B| > r} \int_B |f(x-y)| \, dy \) is the truncated Hardy-Littlewood maximal function.

We invoke the following lemma (see, for instance, [GR]):

Lemma 2. Let \(V \) be a measure in \(\mathbb{R}^{n+1} \), and \(u \) a doubling measure in \(\mathbb{R}^n \), such that for any cube \(I_h \) of side length \(h > 0 \), there exists a constant \(K > 0 \) such that
\[V(I_h \times [0, h]) \leq Ku(I_h) ; \]
then
\[\left| \int_{\mathbb{R}^{n+1}} |M_{s} f(x)|^2 \, dV(x, s) \right|^{1/2} \leq K^{1/2} \left(\int_{\mathbb{R}^n} |f(x)|^2 \, du \right)^{1/2} . \]

We take \(dV(x, t) = w^\alpha \otimes \delta_t \), where \(\delta_t \) is the singular measure on \(s = t \) in \(\mathbb{R}^n \), and \(du(x) = w^{-\alpha}(x) \, dx \); in this case the Carleson constant \(K \) is bounded by \(|||w^\alpha|||^2 t^\beta \), in fact:
\[w^\alpha \otimes \delta_t(I_h \times [0, h]) = \delta_t([0, h]) w^\alpha(I_h) \]
\[= \chi_{t \geq h}(h) w^\alpha(I_h) = \int_{I_h} w^\alpha(x) \, dx \chi_{t, \infty}(h) \]
\[\leq \int_{I_h} w^{-\alpha}(x) \, dx |||w^\alpha|||^2 h^\beta \chi_{t, \infty}(h) \]
\[\leq w^{-\alpha}(I_h) |||w^\alpha|||^2 t^\beta (\beta < 0) . \]

Hence
\[\left(\int |M_{s} f(x)|^2 \, dw^\alpha(x) \right)^{1/2} \leq |||w^\alpha||| t^{\beta/2} \left(\int |f(x)|^2 w^{-\alpha}(x) \, dx \right)^{1/2} \]
and
\[\|T_k \|_{L^2(w^{-1}) \rightarrow L^2(w)} \leq C 2^{k(1-1/\alpha) 2^{-(k(n-1)/2+nk+\hat{k}/2)1/\alpha}} |||w^\alpha|||^{1/\alpha} . \]

We apply interpolation and
\[\|T_k \|_{L^2(w^{-1}) \rightarrow L^2(w)} \leq C 2^{k(1-1/\alpha) 2^{-(k(n-1)/2+nk+\hat{k}/2)1/\alpha}} |||w^\alpha|||^{1/\alpha} \]
\[= C 2^{k(1-(n-\beta)/(2\alpha))} |||w^\alpha|||^{1/\alpha} , \]
and the sum is convergent for \(2 < 2\alpha < (1 - n - \beta) \).

Proof of Theorem 3. We follow along the lines of the proof of Theorem 2.

Take \(m(\xi) = (|\xi|^2 + z)^{-1} \) as a Fourier multiplier; we may assume \(\text{Im} \, z \neq 0 \) by a density argument.
The Fourier transform of \(m \) is given by
\[
K(x) = C \left(\frac{z}{|x|^2} \right)^{1/2(n/2-1)} K_{n/2-1}((z|x|^2)^{1/2}),
\]
where \(K_{n/2-1} \) is a modified Bessel function (see [KRS] and [GS]) whose behavior is
\[
|K_{n/2-1}(t)| \leq C |t|^{-n/2+1}, \quad \text{for } |t| \leq 1, \quad \text{Re } t > 0,
\]
\[
K_{n/2-1}(t) = b(t)t^{-1/2}e^{-t}, \quad \text{for } |t| > 1, \quad \text{Re } t > 0,
\]
where \(b(t) \) satisfies
\[
|\left(\frac{d}{d\rho}\right)^j b(\rho t/|t|)| \leq C_j |\rho|^{-j}.
\]
We take a determination of \((z|x|^2)^{1/2}\) with positive real part. Now,
\[
|K(x)| \leq C |x|^{-n+2} \quad \text{for } |z|^{1/2}|x| \leq 1,
\]
with \(C \) independent of \(z \), and we may consider the convolution operator with \(\psi_k(r|x|)K(x) \). One can see that the worst case occurs when \(\text{Im } z \) is small. In this case the operator behaves like the restriction operator dilated by \(|z| \). This is the idea in the following calculation:

(a) \(T_k: L^2 \to L^2 \) with norm \(2^k/|z| \). In fact, if we denote \(s = |x| \) and \(z^{1/2} = r \cos \alpha + ir \sin \alpha \), the multiplier is
\[
\begin{align*}
&z^{(n-2)/2} \int_{R^n} \psi_k(r|x|)K_{(n/2)-1}(z^{1/2}|x|)|z|x|^2|^{-(n-2)/4} e^{ix\xi} \, dx \\
&= z^{(n-2)/2} \int_{2^{k-1} < rs < 2^k} \psi_k(rs)b(z^{1/2}s)(zs^2)^{-(n-1)/4} e^{-irs \sin \alpha - rs \cos \alpha} \\
&\quad \cdot \int_{s^{-1}} e^{is\omega \xi} d\omega s^{-1} \, ds \\
&= z^{(n-2)/2} \int_{2^{k-1} < rs < 2^k} \psi_k(rs)b(z^{1/2}s)(zs^2)^{-(n-1)/4} e^{-irs \sin \alpha - rs \cos \alpha} \\
&\quad \cdot a(s|\xi|)(s|\xi|)^{-(n-1)/2} e^{is|\xi|} s^{-1} \, ds,
\end{align*}
\]
where \(a \) is a function with the same type of estimates as \(b \).

Since \(\cos \alpha > 0 \), if \(\cos \alpha > \eta > 0 \) the above integral is bounded by \(C \exp(-2^k \eta r) \). Hence the worst case is when \(0 < \cos \alpha < \eta \); we use the stationary phase method and obtain the bound
\[
|z|^{(n-2)/2} |r \sin \alpha|^{-(n-1)/2} 2^k r^{-1} \approx C 2^k r^{-2}.
\]

(b) \(T_k: L^2(w^{-\alpha}) \to L^2(w^\alpha) \) with norm \(r^{2-(\beta/2)} 2^{k(n+1+\beta)/2} |||w^\alpha||| \), by a repetition of the argument in Theorem 2.

Using interpolation we obtain the range of convergence \(2 < 2\alpha < (1 - \beta - n) \) and the operator norm \(L^2(w^{-1}) \to L^2(w) \) of \(T_k \)
\[
Cr^{2-(\beta/2\alpha)} |||w^\alpha|||^{1/\alpha}.
\]
This is independent of \(r \) for \(\beta = -4\alpha \).
Proof of Lemma 1. We may assume, without any restriction, that the γ's are in the coordinates' directions.

Define

$$M_{j, \alpha} f(x) = \left(\sup_{a < x_j < b} \frac{1}{b - a} \int_{[a, b]} |f(x_1, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_n)|^\alpha \, dt \right)^{1/\alpha}.$$

We see that $M_{\alpha} f(x) \leq M_{1, \alpha} \cdots M_{n, \alpha} f(x)$; hence if we prove that for any $j = 1, \ldots, n$, there exists a constant C'_α such that for any $g \in J_{p, F}$, $M_{j, \alpha} g \in J_{p, F'}$, for $F' = C'_\alpha F$, a recurrent application of this fact would prove our statement with $C = C'_\alpha^n$.

Let Q be a cube centered at $z = (z_1, \ldots, z_n)$ of side length δ; in order to evaluate the average of $M_{1, \alpha}$ in Q, we may assume that f is supported on the strip

$$S = \{x \in \mathbb{R}^n, \text{ there exists } t \text{ with } (t, x_2, \ldots, x_n) \text{ in } Q\}.$$

Decompose S in pair of rectangles $R_k \cup R_{-k}$ in Q, where

$$R_k \cup R_{-k} = \{y \in \mathbb{R}^n, |y_j - z_j| < \delta, j = 2, \ldots, n, 2^k \delta < |y_1 - y_n| < 2^{k+1} \delta\}, \quad k = 1, 2, \ldots.$$

Let us denote

$$f_k = f x_{R_k}, \quad f_0 = f x_Q, \quad f_{-k} = f x_{R_{-k}}.$$

Then

$$\left(\delta^{-n} \int_Q (M_{1, \alpha}(f)^p)^{1/p} \right)^{1/p} \leq \left(\sum_{k = -\infty}^{\infty} \delta^{-n} \int_Q (M_{1, \alpha} f_k)^p \right)^{1/p}.$$

For $k = 1, 2, \ldots$, and x in Q

$$M_{1, \alpha} f_k(x) \leq \left(\frac{1}{2^{k+1} \delta} \int_{|z_1 - t| \leq 2^{k+1} \delta} |f_k|^\alpha \, dt \right)^{1/\alpha};$$

hence since $\alpha < p$,

$$\delta^2 \left(\delta^{-n} \int_Q |M_{1, \alpha} f_k|^p \right)^{1/p} \leq \delta^2 \left(\frac{1}{|R_k|} \int_{R_k} |f|^p \, dx \right)^{1/p} \leq \delta^2 \left(2^{k(n-1)} |Q_k|^{-1} \int_{Q_k} |f|^p \right)^{1/p},$$

where Q_k is a cube of side length $2^{k+1} \delta$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The above expression is bounded by $2^{k(n-1)/p-2k}F$. For f_0, since $p/\alpha > 1$ and M_1 is bounded in $L^{p/\alpha}$, we have

$$\delta^2 \left(|Q|^{-1} \int_Q |M_{1,\alpha} f_0|^p \right)^{1/p} \leq C \delta^2 |Q|^{-1/p} \left(\int_Q |M_1 f_0|^{p/\alpha} \right)^{1/p} \leq C \delta^2 \left(1/|Q| \int_Q |f|^p \right)^{1/p} \leq C \alpha F.$$

For $k = -1, -2, \ldots$, we obtain similar bounds (with $|k|$ in the exponent). The sum is convergent if $(n-1)/2 < p$.

Remark and open questions. The condition u in $H^{1,2}$ in the corollary is chosen to avoid a more complicated condition, which states that $\nabla u \in L^2(\omega^{-1})$ and $u \in L^2(\omega)$, for the A_1 weights constructed in the proof. In [KRS] the similar requirement is $u \in H^{2,p}$, $p = 2n/(n+2)$.

In [KRS] the inequality (0) is proved for the operator $\partial^2/\partial t^2 - \Delta_n$ lower order; our proof involves the geometry of the level sets of the kernel; in the Klein-Gordon case this geometry is more complicated. We wonder if there is an appropriate class of potentials V adapted to this case.

ACKNOWLEDGMENT

We have learned during the elaboration of this note that S. Chanillo and E. Sawyer have obtained similar results.

We want to thank S. Chanillo, J. Garcia-Cuerva, and the referee for their clarifying comments.

REFERENCES

Dipartamento di Matematica, Università di Catania, Viale A. Doria 6, Catania, Italy

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain