Fixed points of orientation reversing homeomorphisms of the plane
HTML articles powered by AMS MathViewer
- by Krystyna Kuperberg
- Proc. Amer. Math. Soc. 112 (1991), 223-229
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064906-X
- PDF | Request permission
Abstract:
Let $h$ be an orientation reversing homeomorphism of the plane onto itself. If $X$ is a plane continuum invariant under $h$, then $h$ has a fixed point in $X$. Furthermore, if at least one of the bounded complementary domains of $X$ is invariant under $h$, then $h$ has at least two fixed points in $X$.References
- Harold Bell, A fixed point theorem for plane homeomorphisms, Bull. Amer. Math. Soc. 82 (1976), no. 5, 778–780. MR 410710, DOI 10.1090/S0002-9904-1976-14161-4
- Harold Bell, A fixed point theorem for plane homeomorphisms, Fund. Math. 100 (1978), no. 2, 119–128. MR 500879, DOI 10.4064/fm-100-2-119-128 —, preliminary manuscript.
- Beverly Brechner, Prime ends, indecomposable continua, and the fixed point property, Topology Proc. 4 (1979), no. 1, 227–234 (1980). MR 583705
- Morton Brown, A short short proof of the Cartwright-Littlewood theorem, Proc. Amer. Math. Soc. 65 (1977), no. 2, 372. MR 461491, DOI 10.1090/S0002-9939-1977-0461491-0
- M. L. Cartwright and J. E. Littlewood, Some fixed point theorems, Ann. of Math. (2) 54 (1951), 1–37. With appendix by H. D. Ursell. MR 42690, DOI 10.2307/1969308
- O. H. Hamilton, A short proof of the Cartwright-Littlewood fixed point theorem, Canad. J. Math. 6 (1954), 522–524. MR 64394, DOI 10.4153/cjm-1954-056-8
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 223-229
- MSC: Primary 54F15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064906-X
- MathSciNet review: 1064906