A symbolic calculus for layer potentials on $C^ 1$ curves and $C^ 1$ curvilinear polygons
HTML articles powered by AMS MathViewer
- by Jeff E. Lewis
- Proc. Amer. Math. Soc. 112 (1991), 419-427
- DOI: https://doi.org/10.1090/S0002-9939-1991-1043413-4
- PDF | Request permission
Abstract:
A symbolic calculus for some algebras of Mellin operators on the finite interval $J \equiv \left [ {0,1} \right ]$ is developed. The algebras are ample enough to include singular integral operators and analytic double layer potentials and their adjoints on ${C^1}$ curves and piecewise ${C^1}$ curves with corners. Fredholmness and the index of the operators on ${L^p}\left ( J \right )$ are completely determined by the principal symbol on ${L^p}\left ( J \right ),{\text {Smb}}{{\text {l}}^{1/p}}$.References
- A.-P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324–1327. MR 466568, DOI 10.1073/pnas.74.4.1324
- A. P. Calderon, C. P. Calderon, E. Fabes, M. Jodeit, and N. M. Rivière, Applications of the Cauchy integral on Lipschitz curves, Bull. Amer. Math. Soc. 84 (1978), no. 2, 287–290. MR 460656, DOI 10.1090/S0002-9904-1978-14478-4
- Jonathan Cohen and John Gosselin, The Dirichlet problem for the biharmonic equation in a $C^{1}$ domain in the plane, Indiana Univ. Math. J. 32 (1983), no. 5, 635–685. MR 711860, DOI 10.1512/iumj.1983.32.32044
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- Martin Costabel, Singular integral operators on curves with corners, Integral Equations Operator Theory 3 (1980), no. 3, 323–349. MR 580713, DOI 10.1007/BF01701497
- Johannes Elschner, Asymptotics of solutions to pseudodifferential equations of Mellin type, Math. Nachr. 130 (1987), 267–305. MR 885635, DOI 10.1002/mana.19871300125 E. B. Fabes, M. Jodeit, Jr., and N. M. Rivière, Potential techniques for boundary value problems on ${C^1}$ domains, Acta Math. 141, 263-291.
- Jeff E. Lewis, Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains, Trans. Amer. Math. Soc. 320 (1990), no. 1, 53–76. MR 1005935, DOI 10.1090/S0002-9947-1990-1005935-5
- Jeff E. Lewis and Cesare Parenti, Pseudodifferential operators of Mellin type, Comm. Partial Differential Equations 8 (1983), no. 5, 477–544. MR 695401, DOI 10.1080/03605308308820276
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 419-427
- MSC: Primary 47G30; Secondary 35S05, 45E05, 47A53, 47G10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1043413-4
- MathSciNet review: 1043413