$\alpha$-invariant and $S^ 1$ actions
HTML articles powered by AMS MathViewer
- by Kaoru Ono
- Proc. Amer. Math. Soc. 112 (1991), 597-600
- DOI: https://doi.org/10.1090/S0002-9939-1991-1043417-1
- PDF | Request permission
Abstract:
If a closed spin manifold admits an ${S^1}$ action of odd type, then its $\alpha$-invariant vanishes.References
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- Michael Atiyah and Friedrich Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 18–28. MR 0278334
- M. F. Atiyah and I. M. Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5–26. MR 285033, DOI 10.1007/BF02684885
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. V, Ann. of Math. (2) 93 (1971), 139–149. MR 279834, DOI 10.2307/1970757
- Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1–55. MR 358873, DOI 10.1016/0001-8708(74)90021-8
- Peter S. Landweber and Robert E. Stong, Circle actions on Spin manifolds and characteristic numbers, Topology 27 (1988), no. 2, 145–161. MR 948178, DOI 10.1016/0040-9383(88)90034-1
- André Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9 (French). MR 156292
- John W. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 55–62. MR 0180978
- Serge Ochanine, Genres elliptiques équivariants, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 107–122 (French). MR 970284, DOI 10.1007/BFb0078041
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 597-600
- MSC: Primary 58G10; Secondary 55N15, 57R15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1043417-1
- MathSciNet review: 1043417