A REMARK ON INCOMPARABLE ULTRAFILTERS IN THE RUDIN-KEISLER ORDER

EVA BUTKOVICOVÁ

(Communicated by Dennis Burke)

Abstract. If $2^{<\kappa} > \kappa$ and p is an ultrafilter on ω of character κ then there exist many ultrafilters that are incomparable with p in the Rudin-Keisler order.

The Rudin-Keisler order \leq_{RK} on ω^* is defined as $p \leq_{\text{RK}} q$ iff there exists a function $f: \omega \to \omega$ such that $f(A) = p$, hence $A \in p \iff f^{-1}[A] \in q$.

Problem 19 from [vM] and problem 48 from [HvM] asks: does there exist for every $p \in \omega^*$ a $q \in \omega^*$ such that p and q are incomparable in the Rudin-Keisler order? A partial answer is given by Hindman in [H]: if p has character κ and either κ is singular or all predecessors of p are of character κ then such a q exists.

We shall obtain a stronger result as a corollary to the following theorem.

Theorem. If $\kappa < \kappa$ and $p \in \omega^*$ has character κ then there exist 2^κ ultrafilters which are not \leq_{RK}-greater than p.

Before we give the proof we fix some notation.

Let F denote the Fréchet (cofinite) filter on ω.

For $\mathcal{F} \subseteq \mathcal{P}(\omega)$ put

$$\langle \mathcal{F} \rangle = \left\{ A \subseteq \omega : \exists H \in [\mathcal{F}]^{<\omega} \cap H \subseteq A \right\}. $$

We call the system \mathcal{F} centered if $|\bigcap H| = \omega$ for every finite $H \subseteq \mathcal{F}$.

Clearly, if \mathcal{F} is centered then $\langle \mathcal{F} \rangle$ is the filter generated by \mathcal{F}.

Let $\kappa 2$ denote the product of κ copies of 2, or equivalently the set of functions from κ to 2. Of course $|\kappa 2| = 2^\kappa$.

Proof. We find 2^κ distinct ultrafilters that are not \leq_{RK}-greater than p.

Let $\{f_\gamma : \gamma < \kappa\}$ be an enumeration of the set of functions from ω to ω.

We shall construct by induction on $\gamma < \kappa$ filters \mathcal{F}_g^γ for $g \in \kappa 2$ such that

$$\chi(\mathcal{F}_g^\gamma) \leq \kappa + \gamma, $$

Received by the editors February 6, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 04A20, 03E35.

Key words and phrases. Ultrafilters, Rudin-Keisler order.
(2) there is a set $G \in \mathcal{F}^{\gamma+1}_g$ such that $f_\gamma[G] \notin p$, and

(3) if $\gamma < \delta < c$ then $\mathcal{F}_g^{\gamma} \subseteq \mathcal{F}_g^{\delta}$.

We shall see that (1) ensures (2) can be satisfied. Note that (2) implies any ultrafilter q_g extending $\bigcup_{\gamma < c} \mathcal{F}_g^{\gamma}$ will not be \leq_{RK}-above p.

Let $\{A_\beta : \beta < \kappa, i \in 2\}$ be an independent family of sets. This means that for every $\beta < \kappa$ we have $A_\beta^0 \cap A_\beta^0 = \emptyset$ and $A_\beta^0 \cup A_\beta^0 = \omega$ and that for every finite partial function $\varphi : \kappa \to 2$ the intersection $\bigcap_{\beta \in \text{dom} \varphi} A_\beta^{\varphi(\beta)}$ is infinite. Such families exist; see e.g., [vM, Lemma 3.3.2].

For every $g \in \kappa^2$ we consider the family $\mathcal{F}_g = \{A_\beta^{g(\beta)} : \beta < \kappa\}$. Each family \mathcal{F}_g is centered since we only took sets from the independent family. We start with the distinct filters

$$\mathcal{F}_g^0 = \langle F \cup \mathcal{F}_g \rangle$$

for $g \in \kappa^2$.

Now suppose we are at stage $\gamma < c$ and take $g \in \kappa^2$. Here we use part of Hindman’s construction. Since $\chi(p) = c$ the system $\{f_\gamma[B] : B \in \mathcal{F}_g^{\gamma}\}$ does not generate p. Hence there is a set E such that $\omega - E \in p$ and $\{f_\gamma[B] : B \in \mathcal{F}_g^{\gamma}\} \cup \{E\}$ is centered. It follows that $\mathcal{F}_g^{\gamma} \cup \{f_\gamma^{-1}[E]\}$ is also centered and we can add $G = f_\gamma^{-1}[E]$ to \mathcal{F}_g^{γ}, i.e., we let $F_g^{\gamma+1} = \langle \mathcal{F}_g^{\gamma} \cup \{f_\gamma^{-1}[E]\}\rangle$.

In case γ is a limit we let $\mathcal{F}_g^{\gamma} = \bigcup_{\delta < \gamma} \mathcal{F}_g^{\delta}$.

If at any moment \mathcal{F}_g^{γ} is an ultrafilter then we can stop. It cannot possibly be \leq_{RK}-above p since its character is smaller than that of p.

Since clearly every ultrafilter has at most $c \leq_{RK}$-predecessors, the following is an immediate consequence of our theorem.

Corollary. If $\kappa < c$ is such that $2^\kappa > c$ then for every $p \in \omega^*$ of character c there exist 2^c ultrafilters that are \leq_{RK}-incomparable with p.

Remarks. 1. Since $2^{cf} > c$ our corollary also covers the case when c is singular.

2. Another easy consequence of our corollary is that if one assumes that $2^\kappa > c$ for some $\kappa < c$ and that there is a $p \in \omega^*$ such that $\chi(r) = c$ for all $r \leq_{RK} p$ then for every $u \in \omega^*$ there is a $v \in \omega^*$ that is \leq_{RK}-incomparable with it. (Given u, if the character of u is c, the corollary applies. Otherwise p is not \leq_{RK}-comparable to u.)

References

H N. Hindman, Is there a point of ω^* that sees all others?, Proc. Amer. Math. Soc. 104 (1988), 1235–1238.

Mathematical Institute, Slovak Academy of Sciences, Jesenná 5, 041 54 Košice, Czechoslovakia