A remark on incomparable ultrafilters in the Rudin-Keisler order
HTML articles powered by AMS MathViewer
- by Eva Butkovičová
- Proc. Amer. Math. Soc. 112 (1991), 577-578
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045131-5
- PDF | Request permission
Abstract:
If ${2^{ < {\mathbf {c}}}} > {\mathbf {c}}$ and $p$ is an ultrafilter on $\omega$ of character ${\mathbf {c}}$ then there exist many ultrafilters that are incomparable with $p$ in the Rudin-Keisler order.References
- Klaas Pieter Hart and Jan van Mill, Open problems on $\beta \omega$, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 97–125. MR 1078643
- Neil Hindman, Is there a point of $\omega ^*$ that sees all others?, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1235–1238. MR 931732, DOI 10.1090/S0002-9939-1988-0931732-9
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 577-578
- MSC: Primary 04A20; Secondary 03E05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045131-5
- MathSciNet review: 1045131