Local spectrum and generalized spectrum
HTML articles powered by AMS MathViewer
- by Mostafa Mbekhta
- Proc. Amer. Math. Soc. 112 (1991), 457-463
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045142-X
- PDF | Request permission
Abstract:
This paper provides the proofs of those results announced in $[5,\S 5]$ that deal with the connection between the regular set and the local resolvant set of closed operators on a Hilbert space. We also give some characterizations and properties of Cowen-Douglas operators.References
- Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Mathematics and its Applications, Vol. 9, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0394282
- M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187–261. MR 501368, DOI 10.1007/BF02545748
- Jean-Philippe Labrousse, Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 2, 161–258 (French, with English summary). MR 636072, DOI 10.1007/BF02849344
- Mostafa Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), no. 2, 159–175 (French). MR 901662, DOI 10.1017/S0017089500006807 —, Sur la théorie spectrale généralisée, C. R. Acad. Sci. Paris 306 (1988), 593-596.
- Mostafa Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), no. 1, 69–105 (French). MR 1002122 —, Théorie spectrale locale et limite de nilpotents, Proc. Amer. Math. Soc. (to appear).
- Florian-Horia Vasilescu, Analytic functional calculus and spectral decompositions, Mathematics and its Applications (East European Series), vol. 1, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1982. Translated from the Romanian. MR 690957
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 457-463
- MSC: Primary 47A10; Secondary 47B40
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045142-X
- MathSciNet review: 1045142