On the evaluation of spectral projections onto absolutely continuous parts of a contraction
HTML articles powered by AMS MathViewer
- by Alexey V. Rybkin
- Proc. Amer. Math. Soc. 112 (1991), 451-455
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045149-2
- PDF | Request permission
Abstract:
In terms of the characteristic function of the contraction the norms of the spectral projections onto its absolutely continuous component are evaluated. The row of examples is considered. The exposition is conducted in the framework of the Sz.-Nagy-Foias model.References
- N. K. Nikol′skiĭ and S. V. Khrushchëv, A functional model and some problems of the spectral theory of functions, Trudy Mat. Inst. Steklov. 176 (1987), 97–210, 327 (Russian). Translated in Proc. Steklov Inst. Math. 1988, no. 3, 101–214; Mathematical physics and complex analysis (Russian). MR 902373
- N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
- Nikolaĭ K. Nikolskiĭ and Vasily I. Vasyunin, A unified approach to function models, and the transcription problem, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 405–434. MR 1038349
- B. S. Pavlov, Conditions for separation of the spectral components of a dissipative operator, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 123–148, 240 (Russian). MR 0365199
- B. S. Pavlov, Expansion in eigenfunctions of the absolutely continuous spectrum of a dissipative operator, Vestnik Leningrad. Univ. 1 Mat. Meh. Astronom. Vyp. 1 (1975), 130–137, 191 (Russian, with English summary). Collection of articles dedicated to the memory of Academician V. I. Smirnov. MR 0425657
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 451-455
- MSC: Primary 47A30; Secondary 47A20, 47A45
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045149-2
- MathSciNet review: 1045149