A congruence for the signature of an embedded manifold
HTML articles powered by AMS MathViewer
- by Robert D. Little
- Proc. Amer. Math. Soc. 112 (1991), 587-596
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049846-4
- PDF | Request permission
Abstract:
Let ${M^{2n}}$ be a smooth, closed, orientable $2n$-manifold and suppose that $K_x^{2n - 2}$ is an orientable submanifold of ${M^{2n}}$ dual to a cohomology class $x$. If $d$ is a positive integer, the signatures of $K_{dx}^{2n - 2}$ and $K_x^{2n - 2}$ are related by a numerical congruence. If $n$ is odd, then any codimension 2 submanifold of ${\mathbf {C}}{P^n}$ fixed by a diffeomorphism of odd prime order is dual to the generator of the cohomology algebra.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- G. Brumfiel, On integral $\textrm {PL}$ characteristic classes, Topology 8 (1969), 39–46. MR 234484, DOI 10.1016/0040-9383(69)90029-9
- Karl Heinz Dovermann, Rigid cyclic group actions on cohomology complex projective spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 3, 487–507. MR 878897, DOI 10.1017/S030500410006686X
- Akio Hattori, Genera of ramified coverings, Math. Ann. 195 (1972), 208–226. MR 290399, DOI 10.1007/BF01419595
- Dale Husemoller, Fibre bundles, 2nd ed., Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York-Heidelberg, 1975. MR 0370578
- Robert D. Little, Homotopy complex projective spaces with divisible splitting invariants, Pacific J. Math. 140 (1989), no. 2, 251–262. MR 1023789 —, The defect of codimension two submanifolds of homotopy complex projective space, J. London Math. Soc. (to appear).
- Mikiya Masuda, Smooth group actions on cohomology complex projective spaces with a fixed point component of codimension $2$, A fête of topology, Academic Press, Boston, MA, 1988, pp. 585–602. MR 928419
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Ted Petrie, Smooth $S^{1}$ actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105–153. MR 296970, DOI 10.1090/S0002-9904-1972-12898-2 D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric topology seminar notes, Princeton University, 1967.
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
- Emery Thomas and John Wood, On manifolds representing homology classes in codimension $2$, Invent. Math. 25 (1974), 63–89. MR 383438, DOI 10.1007/BF01389998
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 587-596
- MSC: Primary 57R95; Secondary 55Q50, 55R50, 55S25, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049846-4
- MathSciNet review: 1049846