NOTE ON A THEOREM OF AVAKUMOVIĆ

J. L. GELUK

(Communicated by J. Marshall Ash)

ABSTRACT. A short proof is given of a result due to Avakumović. More specifically the asymptotic behavior of the solution $y(x) \to 0 \ (x \to \infty)$ of the differential equation $y'' = \phi(x) y^{\lambda} \ (\lambda > 1)$ in case $\phi(tx)/\phi(x) \to t^{\sigma} \ (x \to \infty)$, $\sigma > -2$ is given.

In a paper published in 1947, Avakumović [1] studies the asymptotic behavior of solutions $y(x) \to 0$ $(x \to \infty)$ of the differential equation

(1)
$$y'' = \phi(x)y^{\lambda}, \quad \text{with } \lambda > 1.$$

If ϕ is regularly varying with exponent $\sigma > -2$, notation $\phi \in RV_{\sigma}$ (i.e., ϕ is measurable and eventually positive and $\phi(xy)/\phi(x) \to y^{\sigma}$ $(x \to \infty)$ for y > 0) and if y(x) is a solution of (1) satisfying $y(x) \to 0$ $(x \to \infty)$, then

(2)
$$y(x) \sim \left[\frac{(1+\lambda+\sigma)(\sigma+2)}{(\lambda-1)^2} \right]^{1/(\lambda-1)} \left\{ x^2 \phi(x) \right\}^{-1/(\lambda-1)} \quad (x \to \infty) .$$

The above result is generalized to the equation $y'' = f(x)\phi(y)$ in three papers by Marić and Tomić [5, 6, 7]. A related paper is Omey [8].

Here we present a simple proof of the original result using the following well-known approximation result on regularly varying functions:

Lemma (see [2, Theorem 17]). Suppose $f \in \mathbb{RV}_{\alpha}$. Then there exist two functions $f_1 \sim f_2$ such that $f_1(t) \leq f(t) \leq f_2(t)$ for $t \geq t_0$ and such that the functions $\psi_i(t) := \log f_i(e^t)$ are C^{∞} on a neighborhood of ∞ and satisfy

$$\psi_i'(\tau) \to \alpha \qquad (\tau \to \infty)$$

and

$$\psi_i^{(n)}(\tau) \to 0 \qquad (\tau \to \infty), \ n \ge 2,$$

for i = 1, 2.

Theorem. If y is a bounded positive solution of the differential equation $y'' = \phi(x)y^{\lambda}$ with $\phi \in RV_{\sigma}$, $\sigma > -2$, and $\lambda > 1$ constant, then

$$y \in RV_{-(\sigma+2)/(\lambda-1)}$$
.

Received by the editors September 27, 1989 and, in revised form, May 16, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 34E05.

430 J. L. GELUK

Proof. Substitution of $u = y^{1-\lambda}$ and $v(x) = \log u(e^x)$ shows that v satisfies the equation

(3)
$$v'' - v' - \beta v'^2 = -e^{\psi - v},$$

where $\psi = \psi(x) \log\{(\lambda - 1)e^{2x}\phi(e^x)\}$ and $\beta = (\lambda - 1)^{-1} > 0$.

By the lemma, there exists ψ_1 with $\psi - \psi_1 \to 0$, $\psi_1' \to \sigma + 2$, $\psi_1'' \to 0$, and $\psi_1 \le \psi$ for x sufficiently large. Substituting $v = \psi_1 + c$ in (3) now gives

(4)
$$c'' - \gamma c' - \beta c'^2 = -(1 + o(1))e^{-c} + (\sigma + 2)(1 + \beta \sigma + 2\beta) + o(1),$$

with $\gamma := \gamma(x) \to 2\beta(\sigma+2)+1$ $(x \to \infty)$. We claim that c = c(x) tends to a finite limit as $x \to \infty$.

The following three cases are possible:

- (i) c'>0 for $x>x_0$. Then c is ultimately increasing; i.e., $\lim c(x)\leq\infty$ exists. If $c(x)\to\infty$, then by (4), for x sufficiently large, $\delta'>\gamma\delta+\beta\delta^2>\frac{1}{2}\delta$, where $\delta:=c'$. This implies $\delta\to\infty$ and by (4), $(-1/\delta)'=\delta'/\delta^2\to\beta$; hence, $-1/c'=-1/\delta\sim\beta x$ $(x\to\infty)$. This contradicts the assumption c'>0.
- (ii) There is a sequence $x_k \to \infty$ $(k \to \infty)$ with $c'(x_k) = 0$. Assume x_k is the sequence of all consecutive zeros of c. If $c''(x_k) < 0$ (c attains its maximum in x_k) and $\varepsilon > 0$ arbitrary, then $c(x_k) < -\log\{(\sigma+2)(1+\beta\sigma+2\beta)\}$ for large k, by (4). Similarly, if $c''(x_k) > 0$ we find $c(x_k) > -\log\{(\sigma+2)(1+\beta\sigma+2\beta)\}$; hence, a contradiction.
- (iii) c' < 0 for $x > x_0$. Then c is ultimately decreasing. If $c(x) \to \infty$ $(x \to \infty)$, then, since $\psi_1 \le \psi$, we have, using (3),

$$-v'' + v' + \beta v'^2 = e^{\psi - v} > e^{\psi_1 - v} = e^{-c}$$

Hence there exists a sequence $x_n \to \infty$ $(n \to \infty)$ such that $v'(x_n) \to \pm \infty$. If $v'(x_n) \to +\infty$, then $c'(x_n) \to +\infty$; hence, a contradiction. The case $v'(x_n) \to -\infty$ implies $u'(\exp x_n) < 0$; hence, $y'(\exp x_n) > 0$ for n sufficiently large. Since y'' > 0, this contradicts the boundedness of y.

This finishes the proof, since $\psi - v \to \text{constant implies } x^2 \phi(x) \sim c y^{1-\lambda}(x)$; hence, y is regularly varying.

Remark. The conclusion $y \in RV_{-(\sigma+2)/(\lambda-1)}$ implies that $y \to 0$. Moreover, y'' is regularly varying as the product of two regularly varying functions. Application of Karamata's theorem (see, e.g., [3, 4]) then gives $x^2y'' \sim c_0y$ with $c_0 = (\sigma+2)(\sigma+1+\lambda)/(\lambda-1)^2$. Substituting this in (1) gives (2).

REFERENCES

- 1. V. G. Avakumović, Sur l'équation différentielle de Thomas-Fermi, Publ. Inst. Math. (Beograd)(N. S.) 1 (1947), 101-113.
- 2. A. A. Balkema, J. L. Geluk, and L. de Haan, An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. (2) 30 (1979), 385-416.

- 3. N. H. Bingham, C. M. Goldie, and J. L. Teugels, *Regular variation*, Cambridge Univ. Press, Cambridge, 1987.
- 4. J. L. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems, CWI tract 40, Amsterdam, 1987.
- 5. V. Marić and M. Tomić, Asymptotic properties of solutions of the equation $y'' = f(x)\phi(y)$, Math. Z. 149 (1976), 261-266.
- 6. _____, Regular variation and asymptotic properties of solutions of nonlinear differential equations. Publ. Inst. Math. (Beograd) (N. S.) 21 (1977), 119-129.
- 7. ____, Asmptotic properties of solutions of a generalized Thomas-Fermi equation, J. Differential Equations 35 (1980), 36-44.
- 8. E. Omey, Regular variation and its applications to second order linear differential equations, Bull. Soc. Math. Belg. Sér. B 33 (1981), 207-229.

ECONOMETRIC INSTITUTE, ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, 3000 DR ROTTERDAM, THE NETHERLANDS