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NOTE ON A THEOREM OF AVAKUMOVIC

J. L. GELUK

(Communicated by J. Marshall Ash)

Abstract. A short proof is given of a result due to Avakumovic. More specif-

ically the asymptotic behavior of the solution y(x) —► 0 (x —> oo) of the

differential equation y = 4>(x)y (X > 1) in case 4>(tx)l<p(x) —► t" (x —► oo),

a > -2 is given.

In a paper published in 1947, Avakumovic [1] studies the asymptotic behavior

of solutions y(x) —» 0   (x —> oo) of the differential equation

(1) y" = (¡)(x)y ,    with X > 1 .

If <b is regularly varying with exponent a > -2, notation <f) G KVa (i.e., (f> is

measurable and eventually positive and (fi(xy)/4>(x) —► y" (x —» oo) for y > 0 )

and if y(x) is a solution of (1) satisfying y(x) —»0  (x —» oo), then

(2)      y(x)

1/(A-1)
(1+X + <j)((J + 2)

(X-l)2

(   2,,    s,-l/(A-l) , .
{x 4>(x)} (x -»• oo)

The above result is generalized to the equation y" = f(x)(f>(y) in three papers

by Marie and Tomic [5, 6, 7]. A related paper is Omey [8].

Here we present a simple proof of the original result using the following

well-known approximation result on regularly varying functions:

Lemma (see [2, Theorem 17]). Suppose f G RVq . Then there exist two functions

fx ~ f2 such that fx(t) < f(t) < f2(t) for t > t0 and such that the functions

y/j(t) := log f¡(e') are C°° on a neighborhood of oo and satisfy

(¿/(t) -► a       (t ^ oo)

and
vin)(r)^0       (r-oo),  n>2,

for ¿=1,2.

Theorem. // y is a bounded positive solution of the differential equation y" =

4>(x)y   with (¡> G RVff , a > -2, and X > 1 constant, then

y€ RV-(<r+2)/(A-i) •
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1 —X x
Proof. Substitution of u = y and v(x) = logu(e ) shows that v satisfies

the equation

(3) v   -v - ßv   = -e      ,

where y/ = \p(x)log{(X - l)e2x<t>(ex)} and ß = (X- l)~x > 0.

By the lemma, there exists ipx with ip - \px —► 0, y/[ —» o + 2,  \px -* 0, and

¥\<¥ for x sufficiently large. Substituting v = <px + c in (3) now gives

(4) c" - yc - ßc2 = -(l+ o(l))e'c + (o + 2)(l + ßo + 2ß) + o(l),

with y := y(x) -* 2ß(o + 2) + 1 (x —> oo). We claim that c = c(x) tends to a

finite limit as x —* oo .

The following three cases are possible:

(i) c > 0 for x > x0. Then c is ultimately increasing; i.e., limc(.x) < oo

exists. If c(x) —► oo , then by (4), for x sufficiently large, ô' > yô + ßo2 > \ô ,

where S := c'. This implies 5 —> oo and by (4), (-l/ô)' = ô'/S —» ß ; hence,

-l/c = -I/o ~ ßx   (x —> oo). This contradicts the assumption c > 0.

(ii) There is a sequence xk —> oo (k -> oo) with c(xk) = 0. Assume xk is the

sequence of all consecutive zeros of c. If c"(xk) < 0 ( c attains its maximum

in xk ) and e > 0 arbitrary, then c(xk) < — log{(cr + 2)(1 + ßo + 2ß)} for large

Â:,by(4). Similarly, if c"(xk) > 0 we find c(xk) > -log{(o + 2)(l+ßo + 2ß)} ;

hence, a contradiction.

(iii) c < 0 for x > x0. Then c is ultimately decreasing. If c(x) —> oo (x —►

oo), then, since >px < y/, we have, using (3),

"   ,      '   ,    o   '2 V-v .       V,-v -c
-v  +v + ßv   =e      >e '     =e   .

Hence there exists a sequence xn —* oo (n —> oo) such that v'(xn) -* ±oo. If

v'(xn) —* -(-oo, then c'(xn) -» +oo ; hence, a contradiction. The case v'(xn) -»

-oo implies w'(expxn) < 0; hence, y'(expxn) > 0 for n sufficiently large.

Since y" > 0, this contradicts the boundedness of y.

This finishes the proof, since \p - v —► constant implies x <p(x) ~ cy     (x) ;

hence, y is regularly varying.

Remark. The conclusion y G RV_((T+2w„ 1} implies that y —» 0. Moreover,

y" is regularly varying as the product of two regularly varying functions. Ap-
.2.plication of Karamata's theorem (see, e.g., [3, 4]) then gives x y   ~ c0y with

c0 = (a + 2)(o + 1 + X)/(X - I)2 . Substituting this in (1) gives (2).
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