Note on a theorem of Avakumović
HTML articles powered by AMS MathViewer
- by J. L. Geluk
- Proc. Amer. Math. Soc. 112 (1991), 429-431
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052570-5
- PDF | Request permission
Abstract:
A short proof is given of a result due to Avakumović. More specifically the asymptotic behavior of the solution $y\left ( x \right ) \to 0\left ( {x \to \infty } \right )$ of the differential equation $y'' = \phi \left ( x \right ){y^\lambda }\left ( {\lambda > 1} \right )$ in case $\phi \left ( {tx} \right )/\phi \left ( x \right ) \to {t^\sigma }\left ( {x \to \infty } \right ),\sigma > - 2$ is given.References
- Vojislav G. Avakumovic, Sur l’équation différentielle de Thomas-Fermi, Acad. Serbe Sci. Publ. Inst. Math. 1 (1947), 101–113 (French). MR 28491
- A. A. Balkema, J. L. Geluk, and L. de Haan, An extension of Karamata’s Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 120, 385–416. MR 559046, DOI 10.1093/qmath/30.4.385
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 898871, DOI 10.1017/CBO9780511721434
- J. L. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems, CWI Tract, vol. 40, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987. MR 906871
- Vojislav Marić and Miodrag Tomić, Asymptotic properties of solutions of the equation $y''=f(x)\phi (y)$, Math. Z. 149 (1976), no. 3, 261–266. MR 437864, DOI 10.1007/BF01175588
- V. Marić and M. Tomić, Regular variation and asymptotic properties of solutions of nonlinear differential equations, Publ. Inst. Math. (Beograd) (N.S.) 21(35) (1977), 119–129. MR 508433 —, Asmptotic properties of solutions of a generalized Thomas-Fermi equation, J. Differential Equations 35 (1980), 36-44.
- E. Omey, Regular variation and its applications to second order linear differential equations, Bull. Soc. Math. Belg. Sér. B 33 (1981), no. 2, 207–229. MR 682648
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 429-431
- MSC: Primary 34E05; Secondary 26A12
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052570-5
- MathSciNet review: 1052570