New complete genus zero minimal surfaces with embedded parallel ends
HTML articles powered by AMS MathViewer
- by Francisco J. López
- Proc. Amer. Math. Soc. 112 (1991), 539-544
- DOI: https://doi.org/10.1090/S0002-9939-1991-1059629-7
- PDF | Request permission
Abstract:
We construct genus zero complete minimal surfaces of finite total curvature embedded outside a compact set of ${\mathbb {R}^3}$.References
- Luquésio P. Jorge and William H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203–221. MR 683761, DOI 10.1016/0040-9383(83)90032-0
- Liang Xiao, Some results on pseudo-embedded minimal surfaces in $\textbf {R}^3$, Acta Math. Sinica (N.S.) 3 (1987), no. 2, 116–124. MR 913771, DOI 10.1007/BF02565024
- Francisco J. López and Antonio Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991), no. 1, 293–300. MR 1085145
- Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147–174. MR 1178529, DOI 10.1007/BFb0083639 C. K. Peng, Some new examples of minimal surfaces in ${\mathbb {R}^3}$ and its application, MSRI, 07510-85.
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 539-544
- MSC: Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1059629-7
- MathSciNet review: 1059629