Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion
HTML articles powered by AMS MathViewer
- by Gang Wang
- Proc. Amer. Math. Soc. 112 (1991), 579-586
- DOI: https://doi.org/10.1090/S0002-9939-1991-1059638-8
- PDF | Request permission
Abstract:
Let $B = {({B_t})_{t \geq 0}}$ be a standard Brownian motion. For $c > 0$, $k > 0$, let \[ \begin {gathered} T(c,k) = \inf \{ t \geq 0:{\max _{s \leq t}}{B_s} - c{B_t} \geq k\} , \hfill \\ {T^*}(c,k) = \inf \{ t \geq 0:{\max _{s \leq t}}|{B_s}| - c|{B_t}| \geq k\} . \hfill \\ \end {gathered} .\] We show that for $c > 0$ and $k > 0$, both $T(c,k)$ and ${T^*}(c,k)$ are finite almost everywhere. Moreover, $T(c,k)$ and ${T^*}(c,k) \in {L^{p/2}}$ if and only if $c < p/(p - 1)$ for $p > 1$, and for all $c > 0$ when $p \leq 1$. These results have analogues for simple random walks. As a consequence, if $T$ is any stopping time of ${B_t}$ such that ${({B_{T \wedge t}})_{t \geq 0}}$ is uniformly integrable, then both of the inequalities \[ \begin {array}{*{20}{c}} {||{{\sup }_{s \leq T}}{B_s}|{|_p} \leq \frac {p}{{p - 1}}||{B_T}|{|_p},} \\ {{{\left \| {{{\sup }_{s \leq T}}\left | {{B_s}} \right |} \right \|}_P} \leq \frac {p}{{p - 1}}{{\left \| {{B_T}} \right \|}_p},} \\ \end {array} \] are sharp. This implies that $q = p/(p - 1)$ is not only the best constant for Doob’s maximal inequality for general martingales but also for conditionally symmetric martingales (in particular, for dyadic martingales), and for Brownian motion.References
- D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504. MR 208647, DOI 10.1214/aoms/1177699141
- D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 365692, DOI 10.1214/aop/1176997023
- D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), no. 3, 647–702. MR 744226
- S. D. Chatterji, Les martingales et leurs applications analytiques, École d’Été de Probabilités: Processus Stochastiques (Saint Flour, 1971) Lecture Notes in Math., Vol. 307, Springer, Berlin, 1973, pp. 27–164 (French). MR 0448536
- Kai Lai Chung, A course in probability theory, 2nd ed., Probability and Mathematical Statistics, Vol. 21, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0346858
- Burgess Davis, On the $L^{p}$ norms of stochastic integrals and other martingales, Duke Math. J. 43 (1976), no. 4, 697–704. MR 418219
- J. L. Doob, Stochastic processes, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1953 original; A Wiley-Interscience Publication. MR 1038526
- Lester E. Dubins and David Gilat, On the distribution of maxima of martingales, Proc. Amer. Math. Soc. 68 (1978), no. 3, 337–338. MR 494473, DOI 10.1090/S0002-9939-1978-0494473-4
- Lester E. Dubins and Gideon Schwarz, A sharp inequality for sub-martingales and stopping-times, Astérisque 157-158 (1988), 129–145. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 976216
- P. Warwick Millar, Martingale integrals, Trans. Amer. Math. Soc. 133 (1968), 145–166. MR 226721, DOI 10.1090/S0002-9947-1968-0226721-8 G. Wang, Some sharp inequalities for conditionally symmetric martingales, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1989.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 579-586
- MSC: Primary 60G42; Secondary 60J65
- DOI: https://doi.org/10.1090/S0002-9939-1991-1059638-8
- MathSciNet review: 1059638