Higher monotonicity properties and inequalities for zeros of Bessel functions
HTML articles powered by AMS MathViewer
- by Laura Nicolò-Amati Gori, Andrea Laforgia and Martin E. Muldoon
- Proc. Amer. Math. Soc. 112 (1991), 513-520
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062389-7
- PDF | Request permission
Abstract:
L. Lorch and P. Szegö have considered the sign-regularity of the higher differences (with respect to the rank $k$) of the sequence $\{ {c_{\nu k}}\}$ of positive zeros of the Bessel function ${C_\nu }(x)$. Our main purpose here is to extend one of their main results to the higher derivatives with respect to $\kappa$ when ${c_{\nu k}}$ is appropriately defined as a function of a continuous variable $\kappa$ rather than the discrete variable $k$, and the difference operator is replaced by a derivative operator. We also present some inequalities arising from these and other results.References
- Árpád Elbert, Luigi Gatteschi, and Andrea Laforgia, On the concavity of zeros of Bessel functions, Applicable Anal. 16 (1983), no. 4, 261–278. MR 718534, DOI 10.1080/00036818308839474
- Árpád Elbert and Andrea Laforgia, On the square of the zeros of Bessel functions, SIAM J. Math. Anal. 15 (1984), no. 1, 206–212. MR 728696, DOI 10.1137/0515017
- Árpád Elbert and Andrea Laforgia, Monotonicity properties of the zeros of Bessel functions, SIAM J. Math. Anal. 17 (1986), no. 6, 1483–1488. MR 860929, DOI 10.1137/0517106
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154 C J. de La Vallée Poussin, Cours d’analyse infinitésimale, 12th ed., Louvain and Paris, 1959.
- Lee Lorch and Peter Szego, Higher monotonicity properties of certain Sturm-Liouville functions, Acta Math. 109 (1963), 55–73. MR 147695, DOI 10.1007/BF02391809
- Lee Lorch, M. E. Muldoon, and Peter Szego, Higher monotonicity properties of certain Sturm-Liouville functions. III, Canadian J. Math. 22 (1970), 1238–1265. MR 274845, DOI 10.4153/CJM-1970-142-1
- Lee Lorch, Martin E. Muldoon, and Peter Szego, Higher monotonicity properties of certain Sturm-Liouville functions. IV, Canadian J. Math. 24 (1972), 349–368. MR 298113, DOI 10.4153/CJM-1972-029-9
- M. E. Muldoon, Higher monotonicity properties of certain Sturm-Liouville functions. V, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977/78), no. 1-2, 23–37. MR 445033, DOI 10.1017/S0308210500018011 G. Pólya and G. Szegö, Problems and theorems in analysis II, Springer-Verlag, 1972.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 513-520
- MSC: Primary 33C10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062389-7
- MathSciNet review: 1062389