ON MEASURABLE LOCAL HOMOMORPHISMS

ZOLTÁN SASVÁRI

(Communicated by Jonathan M. Rosenberg)

Abstract. We prove that every measurable local homomorphism between locally compact groups is continuous.

Let G and H be locally compact groups. In a recent paper A. Kleppner proved that every measurable homomorphism from G into H is continuous [2]. In the present note we show that this result is true for local homomorphisms as well. Our method of proof differs from that of [2]. The measure referred to throughout is a left Haar measure on G.

Theorem. Let G and H be locally compact groups and let V be an open neighborhood of the identity of G. Suppose that ϕ is a mapping from V into H such that

(i) $\phi(xy) = \phi(x)\phi(y)$ whenever $x, y, xy \in V$;

(ii) $\phi^{-1}(U)$ is measurable for every open set $U \subset H$.

Then ϕ is continuous.

Proof. Let U be an arbitrary neighborhood of the identity of H. To show ϕ is continuous it is sufficient to show that $\phi^{-1}(U)$ contains a neighborhood of the identity of G. Choose a symmetric, relatively compact open set $W \subset U$, $W \neq \emptyset$ so that $WW \subset U$. If $\phi^{-1}(W)$ is not locally null then by Corollary (20.17) in [1] the set $\phi^{-1}(W)\phi^{-1}(W)^{-1}$ contains a neighborhood of the identity. Since $\phi^{-1}(W)\phi^{-1}(W)^{-1} \subset \phi^{-1}(WW) \subset \phi^{-1}(U)$,

it remains to prove that $\phi^{-1}(W)$ cannot be locally null.

On the other hand, suppose that $\phi^{-1}(W)$ is locally null, and denote by H_0 the open subgroup generated by W. Choose a symmetric, relatively compact open set $V_0 \subset V$, $V_0 \neq \emptyset$ with $V_0V_0 \subset V$. We show that $V_0 \cap \phi^{-1}(xH_0)$ is a null set for every $x \in H$.

Since xH_0 is σ-compact it can be covered by denumerably many sets of the form yW ($y \in H$). Thus, it suffices to prove that $V_0 \cap \phi^{-1}(yW)$ is a null set for every $y \in H$. We put $E := \phi(V_0)$ and $S := (E \cap yW)^{-1}$. Because S is compact...
and \(S \subset \bigcup_{z \in E} zW \), there exists a finite number of elements \(z_1, \ldots, z_n \in E \)

such that

\[
S \subset \bigcup_{k=1}^{n} z_k W.
\]

We have

\[
V_0 \cap \varphi^{-1}(yW) \subset V_0 \cap \varphi^{-1}(S) \subset V_0 \cap \left(\bigcup_{k=1}^{n} \varphi^{-1}(z_k W) \right)
\]

\[
= V_0 \cap \left(\bigcup_{k=1}^{n} \varphi^{-1}(E \cap z_k W) \right).
\]

Choose \(g_1, \ldots, g_n \in V_0 \) so that \(\varphi(g_k) = z_k \) \((k = 1, \ldots, n)\). Using the relation \(V_0^{-1}V_0 = V_0V_0 \subset V \) it is not difficult to see that

\[
V_0 \cap \varphi^{-1}(E \cap z_k W) = V_0 \cap g_k \varphi^{-1}(W).
\]

It follows immediately from (1) and (2) that \(V_0 \cap \varphi^{-1}(yW) \) is a null set.

Now let \(x_\alpha (\alpha \in \Gamma) \) be the set of left coset representatives of \(H_0 \). For an arbitrary index set \(\Gamma_0 \subset \Gamma \), the set \(\bigcup_{\alpha \in \Gamma_0} x_\alpha H_0 \) is open; so, \(\bigcup_{\alpha \in \Gamma_0} (V_0 \cap \varphi^{-1}(x_\alpha H_0)) \) is measurable. Moreover,

\[
V_0 = \bigcup_{\alpha \in \Gamma} (V_0 \cap \varphi^{-1}(x_\alpha H_0)),
\]

where the sets \(V_0 \cap \varphi^{-1}(x_\alpha H_0) \) are pairwise disjoint null sets. It follows from Theorem 3.1 in [3] that \(V_0 \) is a null set. This contradiction shows that \(\varphi^{-1}(W) \) cannot be locally null.

References

Sektion Mathematik, Technische Universität, D-8027 Dresden, Germany