Common fixed points in hyperbolic Riemann surfaces and convex domains
HTML articles powered by AMS MathViewer
- by Marco Abate and Jean-Pierre Vigué
- Proc. Amer. Math. Soc. 112 (1991), 503-512
- DOI: https://doi.org/10.1090/S0002-9939-1991-1065938-8
- PDF | Request permission
Abstract:
In this paper we prove that a commuting family of continuous self-maps of a bounded convex domain in ${\mathbb {C}^n}$ which are holomorphic in the interior has a common fixed point. The proof makes use of three basic ingredients: iteration theory of holomorphic maps, a precise description of the structure of the boundary of a convex domain, and a similar result for commuting families of self-maps of a hyperbolic domain of a compact Riemann surface.References
- Marco Abate, Horospheres and iterates of holomorphic maps, Math. Z. 198 (1988), no. 2, 225–238. MR 939538, DOI 10.1007/BF01163293
- Marco Abate, Iteration theory on weakly convex domains, Seminars in Complex Analysis and Geometry, 1988 (Arcavacata, 1988) Sem. Conf., vol. 4, EditEl, Rende, 1990, pp. 1–16. MR 1222246
- Marco Abate, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989), no. 4, 645–655. MR 990593, DOI 10.1007/BF01442858
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- William M. Boyce, Commuting functions with no common fixed point, Trans. Amer. Math. Soc. 137 (1969), 77–92. MR 236331, DOI 10.1090/S0002-9947-1969-0236331-5
- Henri Cartan, Sur les rétractions d’une variété, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 14, 715 (French, with English summary). MR 870703
- Carl C. Cowen, Commuting analytic functions, Trans. Amer. Math. Soc. 283 (1984), no. 2, 685–695. MR 737892, DOI 10.1090/S0002-9947-1984-0737892-8
- Dan J. Eustice, Holomorphic idempotents and common fixed points on the $2$-disk, Michigan Math. J. 19 (1972), 347–352. MR 313486
- L. F. Heath and T. J. Suffridge, Holomorphic retracts in complex $n$-space, Illinois J. Math. 25 (1981), no. 1, 125–135. MR 602903
- John Philip Huneke, On common fixed points of commuting continuous functions on an interval, Trans. Amer. Math. Soc. 139 (1969), 371–381. MR 237724, DOI 10.1090/S0002-9947-1969-0237724-2
- Peter Kiernan, Hyperbolically imbedded spaces and the big Picard theorem, Math. Ann. 204 (1973), 203–209. MR 372260, DOI 10.1007/BF01351589
- Tadeusz Kuczumow and Adam Stachura, Iterates of holomorphic and $k_D$-nonexpansive mappings in convex domains in $\textbf {C}^n$, Adv. Math. 81 (1990), no. 1, 90–98. MR 1051224, DOI 10.1016/0001-8708(90)90005-8
- Raghavan Narasimhan, Several complex variables, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1971. MR 0342725
- Hugo Rossi, Vector fields on analytic spaces, Ann. of Math. (2) 78 (1963), 455–467. MR 162973, DOI 10.2307/1970536
- Allen L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703–706. MR 165508, DOI 10.1090/S0002-9939-1964-0165508-3
- T. J. Suffridge, Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J. 21 (1974), 309–314. MR 367661
- Jean-Pierre Vigué, Géodésiques complexes et points fixes d’applications holomorphes, Adv. in Math. 52 (1984), no. 3, 241–247 (French). MR 744858, DOI 10.1016/0001-8708(84)90023-9
- Jean-Pierre Vigué, Points fixes d’applications holomorphes dans un domaine borné convexe de $\textbf {C}^n$, Trans. Amer. Math. Soc. 289 (1985), no. 1, 345–353 (French, with English summary). MR 779068, DOI 10.1090/S0002-9947-1985-0779068-5
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 503-512
- MSC: Primary 32H50; Secondary 30F10, 58C30
- DOI: https://doi.org/10.1090/S0002-9939-1991-1065938-8
- MathSciNet review: 1065938