Boundaries and modular ideals on locally compact groups
HTML articles powered by AMS MathViewer
- by William Moran and George A. Willis
- Proc. Amer. Math. Soc. 112 (1991), 819-827
- DOI: https://doi.org/10.1090/S0002-9939-1991-1033960-3
- PDF | Request permission
Abstract:
The purpose of this paper is to exhibit an example of a modular ideal of the form ${L^1}(G) * (\delta (e) - \mu )$, where $\mu$ is a probability measure on the locally compact group $G$ which has all of its convolution powers purely singular.References
- Gavin Brown and William Moran, Products of random variables and Kakutani’s criterion for orthogonality of product measures. part 4, J. London Math. Soc. (2) 10 (1975), no. part 4, 401–405. MR 375439, DOI 10.1112/jlms/s2-10.4.401
- J. L. Doob, Stochastic processes, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1953 original; A Wiley-Interscience Publication. MR 1038526
- Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606
- V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 704539
- G. A. Willis, Probability measures on groups and some related ideals in group algebras, J. Funct. Anal. 92 (1990), no. 1, 202–263. MR 1064694, DOI 10.1016/0022-1236(90)90075-V
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 819-827
- MSC: Primary 43A20; Secondary 60B15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1033960-3
- MathSciNet review: 1033960