Bernstein-type inequalities for the derivatives of constrained polynomials
HTML articles powered by AMS MathViewer
- by Tamás Erdélyi
- Proc. Amer. Math. Soc. 112 (1991), 829-838
- DOI: https://doi.org/10.1090/S0002-9939-1991-1036985-7
- PDF | Request permission
Abstract:
Generalizing a number of earlier results, P. Borwein established a sharp Markov-type inequality on $[ - 1,1]$ for the derivatives of polynomials $p \in {\pi _n}$ having at most $k(0 \leq k \leq n)$ zeros in the complex unit disk. Using Lorentz representation and a Markov-type inequality for the derivative of Müntz polynomials due to D. Newman, we give a surprisingly short proof of Borwein’s Theorem. The new result of this paper is to obtain a sharp Bernstein-type analogue of Borwein’s Theorem. By the same method we prove a sharp Bernstein-type inequality for another wide family of classes of constrained polynomials.References
- Peter Borwein, Markov’s inequality for polynomials with real zeros, Proc. Amer. Math. Soc. 93 (1985), no. 1, 43–47. MR 766524, DOI 10.1090/S0002-9939-1985-0766524-4
- T. Erdélyi, Markov-type estimates for certain classes of constrained polynomials, Constr. Approx. 5 (1989), no. 3, 347–356. MR 996935, DOI 10.1007/BF01889614
- T. Erdélyi, Pointwise estimates for derivatives of polynomials with restricted zeros, A. Haar memorial conference, Vol. I, II (Budapest, 1985) Colloq. Math. Soc. János Bolyai, vol. 49, North-Holland, Amsterdam, 1987, pp. 329–343. MR 899542
- T. Erdélyi and J. Szabados, Bernstein type inequalities for a class of polynomials, Acta Math. Hungar. 53 (1989), no. 1-2, 237–251. MR 987055, DOI 10.1007/BF02170073
- P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310–313. MR 1945, DOI 10.2307/1969005
- G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239–251. MR 155135, DOI 10.1007/BF01398235
- Attila Máté, Inequalities for derivatives of polynomials with restricted zeros, Proc. Amer. Math. Soc. 82 (1981), no. 2, 221–225. MR 609655, DOI 10.1090/S0002-9939-1981-0609655-8
- D. J. Newman, Derivative bounds for Müntz polynomials, J. Approximation Theory 18 (1976), no. 4, 360–362. MR 430604, DOI 10.1016/0021-9045(76)90007-1
- John T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approximation Theory 6 (1972), 354–358. MR 342909, DOI 10.1016/0021-9045(72)90041-x
- József Szabados, Bernstein and Markov type estimates for the derivative of a polynomial with real zeros, Functional analysis and approximation (Oberwolfach, 1980) Internat. Ser. Numer. Math., vol. 60, Birkhäuser, Basel-Boston, Mass., 1981, pp. 177–188. MR 650274
- Josef Szabados and A. K. Varma, Inequalities for derivatives of polynomials having real zeros, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 881–887. MR 602815
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 829-838
- MSC: Primary 41A17
- DOI: https://doi.org/10.1090/S0002-9939-1991-1036985-7
- MathSciNet review: 1036985