ESTIMATES FOR INVERSES OF e^{int}
IN SOME QUOTIENT ALGEBRAS OF A^+

ELHASSAN ZEROUALI

(Communicated by Paul S. Muhly)

Abstract. We give estimates for the norm of e^{int} in A^+/I, where I is a closed ideal of A^+ without inner factor, provided that the hull of I satisfies suitable geometric conditions.

Introduction

Let E be a closed subset of the unit circle Γ of Lebesgue measure zero, let $d\mu = \frac{1}{2\pi} d\lambda$, where $d\lambda$ is the Lebesgue measure, and let d be the metric defined by $d(e^{i\theta}, e^{i\theta'}) = |\theta - \theta'|/2\pi(0, \theta, \theta' \in [0, 2\pi])$.

Let A be the Wiener algebra such that

$$\int g \in L^1([0,2\pi]) \text{ such that } \sum_{n \in \mathbb{Z}} |\hat{f}(n)| < +\infty,$$

where $\|f\| = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|$, and let A^+ be the subalgebra of A of functions in A such that $f(n) = 0$ for $n < 0$. We say that E is a ZA^+ set if there exists a nonzero function in A^+ vanishing on E; we denote by I_E^+ the ideal of a function in A^+ vanishing on E and by $A^+(E)$ the quotient algebra $A^+/I_E^+(E)$.

It is shown in [2] that if E is a ZA^+ set we have

$$\|e^{-int}\|_{A^+(E)} = 0(\exp \varepsilon \sqrt{n}) \quad \text{for every } \varepsilon > 0.$$

Kahane and Katznelson prove in [5] that, for every $\beta > 0$, there exists a closed set $E \subset \Gamma$ such that

$$\int_0^{2\pi} \log \frac{1}{d(e^{it}, E)} dt < +\infty$$

and

$$\lim_{n \to +\infty} \inf \frac{\log(\|e^{-int}\|_{A^+(E)})}{n^{1/2}} > 0.$$

Received by the editors January 10, 1990.

In this paper, we prove that, for $1 < p \leq 2$, if E satisfies

$$\int_0^{2\pi} \log^p \frac{1}{d(e^{it}, E)} dt < +\infty,$$

then there exists a $c > 0$ such that

$$\|e^{-int}\|_{A^+} = O(c \exp cn^{1/(1+p)}).$$

If I is a closed ideal of A^+ and the only common inner factor of the functions in I is 1, then, if $h(I) \subset \Gamma$ and satisfies (1), where

$$h(I) = \{z \in \mathcal{D} \text{ such that } f(z) = 0 \text{ for every } f \in I\},$$

the same estimates hold. Let E be a ZA^+ set and set $w_n = \|e^{-int}\|_{A^+_n}$. We write $E^c = \bigcup_{\nu \in N} \alpha_\nu, \beta_\nu I$ and we set $L_\nu = \mu(\alpha_\nu, \beta_\nu I) = |\beta_\nu - \alpha_\nu|/2\pi$. Let φ and ψ be defined for $t \in [0, 1]$ by:

$$\varphi(t) = m(E_t), \text{ where } E_t = \{e^{it} \in \Gamma \text{ such that } d(e^{it}, E) \leq t\},$$

$$\psi(t) = \sum_{L_\nu \leq t} L_\nu.$$

We denote by N^e the smallest integer N such that there exists a collection of arcs $(I_\alpha)_{\alpha \leq N}$ of measure e centered on elements of E and satisfying $E \subset \bigcup_{\alpha \leq N} I_\alpha$.

We begin by remarking that certain conditions on functions ψ, φ, and N^e are equivalent to (1).

Proposition 1. Let $p \geq 1$. The following are equivalent.

(a) $a = \sum_{\nu \in N} L_\nu \log^p \frac{1}{L_\nu} < +\infty$,

(b) $b = \int_0^1 \frac{\varphi(t)}{t} \log^{p-1} \frac{1}{t} dt < +\infty$,

(c) $c = \int_0^1 \frac{\psi(t)}{t} \log^{p-1} \frac{1}{t} dt < +\infty$,

(d) $d = \int_0^{2\pi} \log^p \frac{1}{d(e^{it}, E)} dt < +\infty$.

For $p = 1$ see [3] and [6]. The proof is similar for $p > 1$.

We now give another proposition, due to Atzmon, to be used in the proof of Theorem 3.

Proposition 2. Let $f \in A^+$ and $\lambda \in D = \{z \in \mathbb{C} : |z| < 1\}$. Let Φ be defined by $\Phi(f, \lambda)(z) = \frac{f(z) - f(\lambda)}{z - \lambda}$ for $z \neq \lambda$ and $\Phi(f, \lambda)(\lambda) = f'(\lambda)$. Then $\Phi(f, \lambda) \in A^+$ and, for $\lambda \in D$,

$$\|\Phi(f, \lambda)\|_{A^+} \leq \frac{2\|f\|_{A^+}}{1 - |\lambda|}.$$

If, in addition, $f \in I^+(E)$, then

$$f(\lambda)(\pi(\alpha) - \lambda)^{-1} = -\pi(\Phi(f, \lambda)),$$

where π is the canonical map from A^+ onto $A^+/I^+(E)$.
Proof. Set Lemma 1 and [2, Example 1.3]. Recall that
\[\|e^{int}\|_{A^+(E)} = \|\pi(\alpha)^{n}\|_{A^+/I^+(E)}, \quad n \in \mathbb{Z} \]
where \(\alpha : e^{i\theta} \rightarrow e^{i\theta} \) for \(\theta \in [0, 2\pi] \).
If \(f(\lambda) \neq 0 \), we obtain from (2):
\[(\pi(\alpha) - \lambda)^{-1} \|_{A^+/I^+(E)} \leq \frac{1}{|f(\lambda)|} \frac{2\|f\|_{A^+}}{|1 - |\lambda||}. \]

Theorem 3. If \(E \) satisfies (1), for some \(p \in \mathbb{R} \), then \(E \) is a \(ZA^+ \) set and there exists \(c > 0 \) such that
\[\omega_n = 0(\exp cn^{1/(1+p)}). \]
Proof. As in [3], we define \(h \) by
\[h(t) = K \left(\log \frac{2\pi}{t - \alpha_\nu} + \log \frac{2\pi}{\beta_\nu - t} \right), \quad t \in [\alpha_\nu, \beta_\nu], \quad \nu \in \mathbb{N}. \]
Using Proposition 1, we see that \(h \in L^p(\Gamma) \subset L^1(\Gamma) \), so the function
\[f(z) = \exp \left(-\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} h(t) \, dt \right) \]
is analytic in \(D \).
We have \(f \in A^+ \) for \(K > 2 \) [3], and
\[|f(e^{it})| = \lim_{r \to 1} |f(re^{it})| = \left\{ \frac{(t - \alpha_\nu)(\beta_\nu - t)}{4\pi^2} \right\}^K. \]
Thus \(f|_E = 0 \), and \(E \) is a \(ZA^+ \) set.
Let
\[g(z) = \frac{1}{f(z)} = \exp \left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} h(t) \, dt \right) \quad (z \in D). \]
We have
\[\log |g(re^{i\theta})| = \frac{1}{2\pi} \int_{0}^{2\pi} P_r(\theta - t) h(t) \, dt \quad (0 \leq r < 1). \]
Since \(P_r(\theta - t) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)} \), we obtain
\[\log |g(re^{i\theta})| = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)} h(t) \right) \, dt \]
\[= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} r^{|n|} \left(\int_{0}^{2\pi} e^{-in t} h(t) \, dt \right) e^{in\theta} \]
\[= \sum_{n \in \mathbb{Z}} r^{|n|} \hat{h}(n) e^{in\theta}. \]
Recall that if \(h \in L^p \) for \(1 < p \leq 2 \), then \(\hat{h}(n) \in l^q(\mathbb{Z}) \) and \(\{\sum_{n \in \mathbb{Z}} |\hat{h}(n)|^q\}^{1/q} \leq \|h\|_p \) where \(\frac{1}{p} + \frac{1}{q} = 1 \) [7, p. 98].

So we have
\[
\log |g(re^{i\theta})| \leq \left\{ \sum_{n \in \mathbb{Z}} (r|n|)^p \right\}^{1/p} \|h\|_p \\
\leq 2^{1/p} \frac{1}{(1-r)^{1/p}} \|h\|_p,
\]
and by (2) we have
\[
\|((\pi(\alpha) - \lambda)^{-1})_{A^*\Gamma} \leq \frac{2\|f\|_{A^*} \exp 2^{1/p} \|h\|_p (1 - |\lambda|)^{-1/p}}{1 - |\lambda|}.
\]

Using Lemma 2 in [2] we obtain that there exists \(b, c > 0 \) such that
\[
\|\pi(\alpha)^{-n}\| \leq b \exp c n^{1/(1+p)} \quad \text{for } n \geq 0.
\]

This proves the theorem.

We give an application of this method to some other closed ideals.

Let \(I \) be a closed ideal of \(A^* \), and let
\[
h(I) = \{z \in \overline{D} \text{ such that } f(z) = 0 \text{ for every } f \in I\}.
\]

A consequence of Taylor's and Williams's estimates [8, Lemmas 5.8 and 5.9] is that, if \(f \in A^* \) and \(f(e^{i\theta}) = 0(\text{dist}(e^{i\theta}, h(I))^2) \), and if the only common inner factor of elements of \(I \) is 1, then \(f \in I \) [4].

Using this result we obtain:

Theorem 4. Let \(I \) be a closed ideal of \(A^* \) and let \(\pi: A^* \to A^*/I \) be the canonical map. If \(I \) is such that:

(a) \(h(I) \) satisfies (1) for some \(p \in]1, 2[\), and

(b) the only common inner factor of all elements of \(I \) is 1,

then there exists \(c > 0 \) such that
\[
\|\pi(\alpha)^{-n}\|_{A^*/I} = 0(\exp c n^{1/(1+p)})
\]

Proof. From (b) we have \(h(I) \subset \Gamma \). Since \(h(I) \) satisfies (1), if \(f \) is the function defined in theorem 3 for \(E = h(I) \), then \(f \) verifies
\[
f(e^{i\theta}) = 0(\text{dist}(e^{i\theta}, h(I)))^{K}, \quad K > 2.
\]

Thus \(f \in I \).

We see as above that
\[
\|((\pi(\alpha) - \lambda)^{-1}) \| \leq \frac{2\|f\|_{A^*}}{1 - |\lambda|},
\]
and the estimates for \(\|\pi(\alpha)^{-n}\| \) follow from the same argument as in the proof of Theorem 3.
References

Unité de Formation et de Recherche de Mathématiques, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence, France