Principal distributions for almost unperturbed Schrödinger pairs of operators
HTML articles powered by AMS MathViewer
- by Daoxing Xia
- Proc. Amer. Math. Soc. 112 (1991), 745-754
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042275-9
- PDF | Request permission
Abstract:
The relation between the principal distribution for an almost unperturbed Schrödinger pair operators $\{ U,V\}$ and the unitary operator $W$ satisfying $V = {W^{ - 1}}UW$ is found.References
- M. Š. Birman, Existence conditions for wave operators, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 883–906 (Russian). MR 0161150
- Richard W. Carey and Joel D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras, Acta Math. 138 (1977), no. 3-4, 153–218. MR 435901, DOI 10.1007/BF02392315
- Richard W. Carey and Joel D. Pincus, Almost commuting pairs of unitary operators and flat currents, Integral Equations Operator Theory 4 (1981), no. 1, 45–122. MR 602619, DOI 10.1007/BF01682746
- Louis de Branges, Perturbations of self-adjoint transformations, Amer. J. Math. 84 (1962), 543–560. MR 154132, DOI 10.2307/2372861
- Shige Toshi Kuroda, Perturbation of continuous spectra by unbounded operators. II, J. Math. Soc. Japan 12 (1960), 243–257. MR 140947, DOI 10.2969/jmsj/01230243
- Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429
- Daoxing Xia, On the almost unperturbed Schrödinger pair of operators, Integral Equations Operator Theory 12 (1989), no. 2, 241–279. MR 986597, DOI 10.1007/BF01195116 J. Xia, personal communication, 1989.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 745-754
- MSC: Primary 47B25; Secondary 47A55, 47G20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042275-9
- MathSciNet review: 1042275