Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Spread and local properties
HTML articles powered by AMS MathViewer

by Basil Coutant PDF
Proc. Amer. Math. Soc. 112 (1991), 893-898 Request permission

Abstract:

A technique for combining the spread of a space and several local properties is exploited to obtain decompositions of a space and cardinal function bounds on the size and weight. It is shown that a locally countable set is the union of ${\omega _1}$ discrete sets and that under $MA\left ( {{\omega _1}} \right )$ the weight of a manifold is equal to its spread.
References
    U. Abraham and S. Todorčević, Martin’s axiom and first-countable $S$- and $L$-spaces, Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 327-346.
  • Zoltán T. Balogh, Locally nice spaces under Martin’s axiom, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 63–87. MR 703926
  • Basil Coutant, Some cardinal function relationships between $C_p(X)$ and finite powers of a space $X$, Topology Appl. 39 (1991), no. 3, 245–259. MR 1110568, DOI 10.1016/0166-8641(91)90117-5
  • Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna, Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
  • D. H. Fremlin, Perfect pre-images of $\omega _i$ and the PFA, Topology Appl. 29 (1988), no. 2, 151–166. MR 949366, DOI 10.1016/0166-8641(88)90072-7
  • R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1–61. MR 776620
  • I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998–1005. MR 428245, DOI 10.4153/CJM-1976-098-8
  • Peter Nyikos, The theory of nonmetrizable manifolds, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 633–684. MR 776633
  • Judy Roitman, Basic $S$ and $L$, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 295–326. MR 776626
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 03E50
  • Retrieve articles in all journals with MSC: 54A25, 03E50
Additional Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 112 (1991), 893-898
  • MSC: Primary 54A25; Secondary 03E50
  • DOI: https://doi.org/10.1090/S0002-9939-1991-1045132-7
  • MathSciNet review: 1045132