Spread and local properties
HTML articles powered by AMS MathViewer
- by Basil Coutant
- Proc. Amer. Math. Soc. 112 (1991), 893-898
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045132-7
- PDF | Request permission
Abstract:
A technique for combining the spread of a space and several local properties is exploited to obtain decompositions of a space and cardinal function bounds on the size and weight. It is shown that a locally countable set is the union of ${\omega _1}$ discrete sets and that under $MA\left ( {{\omega _1}} \right )$ the weight of a manifold is equal to its spread.References
- U. Abraham and S. TodorÄeviÄ, Martinâs axiom and first-countable $S$- and $L$-spaces, Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 327-346.
- ZoltĂĄn T. Balogh, Locally nice spaces under Martinâs axiom, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 63â87. MR 703926
- Basil Coutant, Some cardinal function relationships between $C_p(X)$ and finite powers of a space $X$, Topology Appl. 39 (1991), no. 3, 245â259. MR 1110568, DOI 10.1016/0166-8641(91)90117-5
- Ryszard Engelking, Topologia ogĂłlna, Biblioteka Matematyczna [Mathematics Library], vol. 47, PaĆstwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- D. H. Fremlin, Perfect pre-images of $\omega _i$ and the PFA, Topology Appl. 29 (1988), no. 2, 151â166. MR 949366, DOI 10.1016/0166-8641(88)90072-7
- R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1â61. MR 776620
- I. JuhĂĄsz, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998â1005. MR 428245, DOI 10.4153/CJM-1976-098-8
- Peter Nyikos, The theory of nonmetrizable manifolds, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 633â684. MR 776633
- Judy Roitman, Basic $S$ and $L$, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 295â326. MR 776626
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 893-898
- MSC: Primary 54A25; Secondary 03E50
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045132-7
- MathSciNet review: 1045132