Algebras of finite self-injective dimension
HTML articles powered by AMS MathViewer
- by Mitsuo Hoshino
- Proc. Amer. Math. Soc. 112 (1991), 619-622
- DOI: https://doi.org/10.1090/S0002-9939-1991-1047011-8
- PDF | Request permission
Abstract:
Let $A$ be an artin algebra. Then $A$ has finite self-injective dimensions on both sides if and only if every finitely generated left $A$-module has finite Gorenstein dimension.References
- Maurice Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 189–231. MR 0212070
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Abraham Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73–86. MR 244325, DOI 10.1016/0021-8693(69)90007-6
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 619-622
- MSC: Primary 16P20; Secondary 16E10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1047011-8
- MathSciNet review: 1047011