Explicit construction of universal operator algebras and applications to polynomial factorization
HTML articles powered by AMS MathViewer
- by David P. Blecher and Vern I. Paulsen
- Proc. Amer. Math. Soc. 112 (1991), 839-850
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049839-7
- PDF | Request permission
Abstract:
Using the characterization of unital operator algebras developed in [6], we give explicit internal definitions of the free product and the maximal operator-algebra tensor product of operator algebras and of the group operator algebra ${\text {OA}}(G)$ of a discrete semigroup $G$ (if $G$ is a discrete group, then ${\text {OA}}(G)$ coincides with the group ${C^ * }$-algebra ${C^*}(G))$). This approach leads to new factorization theorems for polynomials in one and two variables.References
- T. Andô, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88–90. MR 155193
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- Daniel Avitzour, Free products of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 271 (1982), no. 2, 423–435. MR 654842, DOI 10.1090/S0002-9947-1982-0654842-1
- Bruce A. Barnes, Representations of the $l^{1}$-algebra of an inverse semigroup, Trans. Amer. Math. Soc. 218 (1976), 361–396. MR 397310, DOI 10.1090/S0002-9947-1976-0397310-4
- David P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 709–715. MR 1009985, DOI 10.1090/S0002-9939-1990-1009985-X
- David P. Blecher, Zhong-Jin Ruan, and Allan M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), no. 1, 188–201. MR 1040962, DOI 10.1016/0022-1236(90)90010-I
- Lawrence G. Brown, Ext of certain free product $C^{\ast }$-algebras, J. Operator Theory 6 (1981), no. 1, 135–141. MR 637007
- Erik Christensen, Edward G. Effros, and Allan Sinclair, Completely bounded multilinear maps and $C^\ast$-algebraic cohomology, Invent. Math. 90 (1987), no. 2, 279–296. MR 910202, DOI 10.1007/BF01388706
- Erik Christensen and Allan M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), no. 5, 417–448. MR 1005819, DOI 10.1112/blms/21.5.417
- M. J. Crabb and A. M. Davie, von Neumann’s inequality for Hilbert space operators, Bull. London Math. Soc. 7 (1975), 49–50. MR 365179, DOI 10.1112/blms/7.1.49
- Edward G. Effros, On multilinear completely bounded module maps, Operator algebras and mathematical physics (Iowa City, Iowa, 1985) Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 479–501. MR 878396, DOI 10.1090/conm/062/878396
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8 J. Froelich and H. Salas, The ${C^*}$-algebra generated by a ${C^*}$-universal operator, J. Integral Equations Operator Theory (to appear).
- Donald W. Hadwin, Continuous functions of operators; a functional calculus, Indiana Univ. Math. J. 27 (1978), no. 1, 113–125. MR 467367, DOI 10.1512/iumj.1978.27.27010
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- V. I. Paulsen and S. C. Power, Tensor products of nonselfadjoint operator algebras, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 331–350. MR 1065833, DOI 10.1216/rmjm/1181073110
- V. I. Paulsen and R. R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73 (1987), no. 2, 258–276. MR 899651, DOI 10.1016/0022-1236(87)90068-1
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Zhong-Jin Ruan, Subspaces of $C^*$-algebras, J. Funct. Anal. 76 (1988), no. 1, 217–230. MR 923053, DOI 10.1016/0022-1236(88)90057-2
- Béla Sz.-Nagy, Sur les contractions de l’espace de Hilbert, Acta Sci. Math. (Szeged) 15 (1953), 87–92 (French). MR 58128
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Functional Analysis 16 (1974), 83–100. MR 0355642, DOI 10.1016/0022-1236(74)90071-8
- Johann von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281 (German). MR 43386, DOI 10.1002/mana.3210040124 D. Voiculescu, Noncommutative random variables and spectral problems in free product ${C^*}$-algebras, preprint.
- Florin Boca, Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), no. 2, 251–263. MR 1111181, DOI 10.1016/0022-1236(91)90001-L
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 839-850
- MSC: Primary 46L99; Secondary 22D25, 46M05, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049839-7
- MathSciNet review: 1049839