A CORRECTION TO
"ON EXTENSIONS OF MODELS
OF STRONG FRAGMENTS OF ARITHMETIC"

ROMAN KOSSAK

(Communicated by Andreas R. Blass)

Theorem 3.1 in [Kos] says that if M is a model of $I\Delta_0 + \text{exp}$ and N is an end extension of M such that $N \equiv I\Delta_0$ and for some $a \in M$ there is a function f which is coded in N whose domain is included in $< a$ and whose range is unbounded in M, then M has continuum many automorphisms.

Richard Kaye has pointed out to me that, while the result is correct, the proof given in [Kos] is insufficient. The problem is discussed in [Kaye] where a full proof of a stronger theorem is also given. Here our purpose is to explain briefly where the gap is and how to fill it.

In the proof of [Kos, Theorem 3.1], I claimed that if $b \in M$ is such that $2^n < b$, for all standard n, then there is an automorphism of M which is the identity function on $< a$ and which moves elements below b. But it is only proved that, under the above assumptions, there are $e_1, e_2 < b, e_1 \neq e_2$, which satisfy the same Δ_0 formulas with parameters less than a. This is not enough, however, to prove the existence of the automorphism. (On the contrary, as shown in [Kaye], if b is not large enough such automorphisms do not exist.)

Let me outline what has to be done.

Let $2_1(x) = 2^x$, and let $2_{n+1}(x) = 2_1(2_n(x))$. The correct version of the claim is: if M, N, and a are as in Theorem 3.1 and for every standard n we have $2_n(a) < b$, then there is an automorphism of M which is the identity function on $< a$ and moves elements below b.

In the proof, Kaye uses a counting argument to show that there are $e_1, e_2 < b, e_1 \neq e_2$, which satisfy the same Δ_0 formulas with parameters less than $2_n(a)$, for all standard n. But now this is enough to construct the automorphism (using an argument from [Kot, Lemma 4.4]).

To finish the proof of the theorem we need to consider two cases. Case 1: there is a $b \in M$ such that $2_n(a) < b$ for all standard n. Case 2: $M = \sup_{n \in \omega} 2_n(a)$.
In the first case, we apply the claim. In the second, there is a \(c \in N \) which codes the sequence \(2_n(a), \ n \in \omega \). Then, instead of constructing an automorphism fixing \(< a \) pointwise, it is enough to find an automorphism fixing \(c \) and moving elements inside \(M \), and this is a much simpler task.

Bibliography

Mathematical Institute, Polish Academy of Sciences, Sniadeckich 8, P. O. Box 137, 00-950 Warsaw, Poland