A hypercyclic operator whose adjoint is also hypercyclic
HTML articles powered by AMS MathViewer
- by Héctor Salas
- Proc. Amer. Math. Soc. 112 (1991), 765-770
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049848-8
- PDF | Request permission
Abstract:
An operator $T$ acting on a Hilbert space $H$ is hypercyclic if, for some vector $x$ in $H$, the orbit $\{ {T^n}x:n \geq 0\}$ is dense in $H$. We show the existence of a hypercyclic operator—in fact, a bilateral weighted shift—whose adjoint is also hypercyclic. This answers positively a question of D. A. Herrero.References
- Constantin Apostol, Lawrence A. Fialkow, Domingo A. Herrero, and Dan Voiculescu, Approximation of Hilbert space operators. Vol. II, Research Notes in Mathematics, vol. 102, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 735080
- Robert M. Gethner and Joel H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281–288. MR 884467, DOI 10.1090/S0002-9939-1987-0884467-4
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Israel Halperin, Carol Kitai, and Peter Rosenthal, On orbits of linear operators, J. London Math. Soc. (2) 31 (1985), no. 3, 561–565. MR 812786, DOI 10.1112/jlms/s2-31.3.561
- Domingo A. Herrero, The diagonal entries in the formula “quasitriangular $-$ compact $=$ triangular” and restrictions of quasitriangularity, Trans. Amer. Math. Soc. 298 (1986), no. 1, 1–42. MR 857432, DOI 10.1090/S0002-9947-1986-0857432-4
- Domingo A. Herrero, Spectral pictures of operators in the Cowen-Douglas class ${\scr B}_n(\Omega )$ and its closure, J. Operator Theory 18 (1987), no. 2, 213–222. MR 915506
- Xiao Hong Cao and Yong Ge Wang, Hypercyclic and supercyclic operators, Qufu Shifan Daxue Xuebao Ziran Kexue Ban 24 (1998), no. 4, 4–7 (Chinese, with English and Chinese summaries). MR 1670822
- Domingo A. Herrero and Warren R. Wogen, On the multiplicity of $T\oplus T\oplus \cdots \oplus T$, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 445–466. MR 1065843, DOI 10.1216/rmjm/1181073120
- Domingo A. Herrero and Zong Yao Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), no. 3, 819–829. MR 1078739, DOI 10.1512/iumj.1990.39.39039 C. Kitai, Invariant closed sets for linear operators, Thesis, Univ. of Toronto, 1982.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 765-770
- MSC: Primary 47A65; Secondary 47B37
- DOI: https://doi.org/10.1090/S0002-9939-1991-1049848-8
- MathSciNet review: 1049848