The stability of certain functional equations
HTML articles powered by AMS MathViewer
- by John A. Baker
- Proc. Amer. Math. Soc. 112 (1991), 729-732
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052568-7
- PDF | Request permission
Abstract:
The aim of this paper is to prove the stability (in the sense of Ulam) of the functional equation: \[ f(t) = \alpha (t) + \beta (t)f(\phi (t)),\] where $\alpha$ and $\beta$ are given complex valued functions defined on a nonempty set $S$ such that $\sup \{ |\beta (t)|:t \in S\} < 1$ and $\phi$ is a given mapping of $S$ into itself.References
- J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. MR 0208210
- Michael Albert and John A. Baker, Functions with bounded $n$th differences, Ann. Polon. Math. 43 (1983), no. 1, 93–103. MR 727892, DOI 10.4064/ap-43-1-93-103
- John A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411–416. MR 580995, DOI 10.1090/S0002-9939-1980-0580995-3
- D. H. Hyers, The stability of homomorphisms and related topics, Global analysis–analysis on manifolds, Teubner-Texte Math., vol. 57, Teubner, Leipzig, 1983, pp. 140–153. MR 730609
- Marek Kuczma, Functional equations in a single variable, Monografie Matematyczne, Tom 46, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. MR 0228862
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 729-732
- MSC: Primary 39B52
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052568-7
- MathSciNet review: 1052568