What makes $\textrm {Tor}^ R_ 1(R/I,I)$ free?
HTML articles powered by AMS MathViewer
- by Shiro Goto and Naoyoshi Suzuki
- Proc. Amer. Math. Soc. 112 (1991), 605-611
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052871-0
- PDF | Request permission
Abstract:
Let $I$ be a nonprincipal ideal in a Noetherian local ring $R$ and let ${H_1}(I)$ be the first homology module of the Koszul complex $K.(I)$ associated with a minimal basis of $I$. Then $T: = {\text {Tor}}_1^R(R/I,I)$ is a free $R/I$-module if and only if both the $R/I$-modules $I/{I^2}$ and ${H_1}(I)$ are free. When this is 2 2 the case, we have a canonical decomposition $T \cong {\Lambda ^2}(I/{I^2}) \oplus {H_1}(I)$ as well as the equality ${\text {rank}_{R/I}}T = {\beta _2}(R/I)$. (Here ${\beta _2}(R/I)$ denotes the second Betti number of the $R$-module $R/I$.) Some consequences are discussed too.References
- Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625–657. MR 99978, DOI 10.2307/1970159
- Javier Barja and Antonio G. Rodicio, Syzygetic ideals, regular sequences, and a question of Simis, J. Algebra 121 (1989), no. 2, 310–314. MR 992766, DOI 10.1016/0021-8693(89)90067-7
- Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Papers in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont., 1969. MR 0262227
- Peter Schenzel, Ngô Viêt Trung, and Nguyễn Tụ’ Cu’ò’ng, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73 (German). MR 517641, DOI 10.1002/mana.19780850106
- Aron Simis, Koszul homology and its syzygy-theoretic part, J. Algebra 55 (1978), no. 1, 28–42. MR 515757, DOI 10.1016/0021-8693(78)90188-6
- A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203–224. MR 610474, DOI 10.2307/2374214 J. Stückrad and W. Vogel, Buchsbaum rings and applications, VEB Deutscher Verlag der Wissenschaften, 1987. N. Suzuki, On a basic theorem for quasi-Buchsbaum modules, Bull. Dept. Gen. Ed. Shizuoka College of Pharmacy 11 (1982), 33-40.
- W. V. Vasconcelos, On the homology of $I/I^{2}$, Comm. Algebra 6 (1978), no. 17, 1801–1809. MR 508082, DOI 10.1080/00927877808822322
- Wolmer V. Vasconcelos, Ideals generated by $R$-sequences, J. Algebra 6 (1967), 309–316. MR 213345, DOI 10.1016/0021-8693(67)90086-5
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 605-611
- MSC: Primary 13D02; Secondary 13D05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052871-0
- MathSciNet review: 1052871