Henselian rings and Weierstrass polynomials
HTML articles powered by AMS MathViewer
- by Budh Nashier
- Proc. Amer. Math. Soc. 112 (1991), 685-690
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057944-4
- PDF | Request permission
Abstract:
We give two characterizations of a one-dimensional Henselian domain. If $\left ( {A,\mathcal {M}} \right )$ is a local domain of Krull dimension at least two, or if $\left ( {A,\mathcal {M}} \right )$ is a one-dimensional Henselian local domain, then a polynomial $f$ in $A\left [ T \right ]$ is Weierstrass if and only if $\left ( {\mathcal {M},T} \right )$ is the only maximal ideal of $A\left [ T \right ]$ that contains $f$.References
- Emil Artin and John T. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74–77. MR 44509, DOI 10.2969/jmsj/00310074
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 685-690
- MSC: Primary 13F20; Secondary 13B25, 13J15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057944-4
- MathSciNet review: 1057944