Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Embedding Galois problems and reduced norms
HTML articles powered by AMS MathViewer

by Teresa Crespo
Proc. Amer. Math. Soc. 112 (1991), 637-639
DOI: https://doi.org/10.1090/S0002-9939-1991-1057951-1

Abstract:

For certain embedding problems $\tilde G \to G \simeq {\text {Gal}}\left ( {L\left | K \right .} \right )$ associated to a representation $t:G \to {\text {Aut}}A$ of the group $G$ by automorphisms of a central simple $K$-algebra $A$ of dimension ${n^2}$, we prove that the solutions are the fields $L\left ( {{{\left ( {rN\left ( z \right )} \right )}^{1/n}}} \right )$, with $r$ running over ${K^ * }/{K^{ * n}}$ and $N\left ( z \right )$ the reduced norm of an invertible element $z$ in the algebra $B \otimes L$, for $B$ the twisted algebra of $A$ by $t$.
References
  • Teresa Crespo, Explicit solutions to embedding problems associated to orthogonal Galois representations, J. Reine Angew. Math. 409 (1990), 180–189. MR 1061524, DOI 10.1515/crll.1990.409.180
  • A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math. 360 (1985), 84–123. MR 799658, DOI 10.1515/crll.1985.360.84
  • Serge Lang, Rapport sur la cohomologie des groupes, W. A. Benjamin, Inc., New York-Amsterdam, 1967 (French). MR 0212073
  • C. Soulé, ${K_2}$ et le groupe de Brauer, Séminaire Bourbaki, vol. 601, 1982/83.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11E88, 12F10
  • Retrieve articles in all journals with MSC: 11E88, 12F10
Bibliographic Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 112 (1991), 637-639
  • MSC: Primary 11E88; Secondary 12F10
  • DOI: https://doi.org/10.1090/S0002-9939-1991-1057951-1
  • MathSciNet review: 1057951