Embedding Galois problems and reduced norms
HTML articles powered by AMS MathViewer
- by Teresa Crespo
- Proc. Amer. Math. Soc. 112 (1991), 637-639
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057951-1
- PDF | Request permission
Abstract:
For certain embedding problems $\tilde G \to G \simeq {\text {Gal}}\left ( {L\left | K \right .} \right )$ associated to a representation $t:G \to {\text {Aut}}A$ of the group $G$ by automorphisms of a central simple $K$-algebra $A$ of dimension ${n^2}$, we prove that the solutions are the fields $L\left ( {{{\left ( {rN\left ( z \right )} \right )}^{1/n}}} \right )$, with $r$ running over ${K^ * }/{K^{ * n}}$ and $N\left ( z \right )$ the reduced norm of an invertible element $z$ in the algebra $B \otimes L$, for $B$ the twisted algebra of $A$ by $t$.References
- Teresa Crespo, Explicit solutions to embedding problems associated to orthogonal Galois representations, J. Reine Angew. Math. 409 (1990), 180–189. MR 1061524, DOI 10.1515/crll.1990.409.180
- A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math. 360 (1985), 84–123. MR 799658, DOI 10.1515/crll.1985.360.84
- Serge Lang, Rapport sur la cohomologie des groupes, W. A. Benjamin, Inc., New York-Amsterdam, 1967 (French). MR 0212073 C. Soulé, ${K_2}$ et le groupe de Brauer, Séminaire Bourbaki, vol. 601, 1982/83.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 637-639
- MSC: Primary 11E88; Secondary 12F10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057951-1
- MathSciNet review: 1057951