## An $n\times n$ matrix of linear maps of a $C^ *$-algebra

HTML articles powered by AMS MathViewer

- by Ching Yun Suen PDF
- Proc. Amer. Math. Soc.
**112**(1991), 709-712 Request permission

## Abstract:

Every positive $n \times n$ matrix of linear functionals on a ${C^ * }$-algebra is completely positive. [3, Theorem 2.1] can be extended to the case of a bounded $n \times n$ matrix of linear functionals.## References

- William B. Arveson,
*Subalgebras of $C^{\ast }$-algebras*, Acta Math.**123**(1969), 141โ224. MR**253059**, DOI 10.1007/BF02392388 - Uffe Haagerup,
*Injectivity and decomposition of completely bounded maps*, Operator algebras and their connections with topology and ergodic theory (Buลteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp.ย 170โ222. MR**799569**, DOI 10.1007/BFb0074885 - Alexander Kaplan,
*Multi-states on $C^*$-algebras*, Proc. Amer. Math. Soc.**106**(1989), no.ย 2, 437โ446. MR**972233**, DOI 10.1090/S0002-9939-1989-0972233-2 - Vern I. Paulsen,
*Completely bounded maps and dilations*, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR**868472** - Vern I. Paulsen and Ching Yun Suen,
*Commutant representations of completely bounded maps*, J. Operator Theory**13**(1985), no.ย 1, 87โ101. MR**768304** - R. R. Smith,
*Completely bounded maps between $C^{\ast }$-algebras*, J. London Math. Soc. (2)**27**(1983), no.ย 1, 157โ166. MR**686514**, DOI 10.1112/jlms/s2-27.1.157 - R. R. Smith and J. D. Ward,
*Matrix ranges for Hilbert space operators*, Amer. J. Math.**102**(1980), no.ย 6, 1031โ1081. MR**595006**, DOI 10.2307/2374180 - W. Forrest Stinespring,
*Positive functions on $C^*$-algebras*, Proc. Amer. Math. Soc.**6**(1955), 211โ216. MR**69403**, DOI 10.1090/S0002-9939-1955-0069403-4 - Ching Yun Suen,
*Completely bounded maps on $C^\ast$-algebras*, Proc. Amer. Math. Soc.**93**(1985), no.ย 1, 81โ87. MR**766532**, DOI 10.1090/S0002-9939-1985-0766532-3
M. Takasaki,

*Theory of operator algebra*1, Springer-Verlag, Berlin, 1979.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**112**(1991), 709-712 - MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069296-4
- MathSciNet review: 1069296